The power of primitive positive definitions with polynomially many variables

Two well-studied closure operators for relations are based on existentially quantified conjunctive formulas, primitive positive (p.p.) definitions, and primitive positive formulas without existenti ...

[1]  V. B. ALEKSEEV,et al.  On some closed classes in partial two-valued logic , 1994 .

[2]  Noga Alon,et al.  Color-coding , 1995, JACM.

[3]  Henning Schnoor,et al.  Partial Polymorphisms and Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[4]  Robert W. Quackenbush On the composition of idempotent functions , 1971 .

[5]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[6]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[7]  Heribert Vollmer,et al.  Complexity of Constraints, 06401 , 2006 .

[8]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[9]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[10]  Magnus Wahlström,et al.  Bounded Bases of Strong Partial Clones , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.

[11]  Victor Lagerkvist Weak bases of Boolean co-clones , 2014, Inf. Process. Lett..

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[14]  Karsten Scholzel Dichotomy on intervals of strong partial Boolean clones , 2014 .

[15]  Lucien Haddad,et al.  Maximal chains of partial clones containing all idempotent partial functions , 1999, Proceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No.99CB36329).

[16]  Gustav Nordh,et al.  Complexity of SAT Problems, Clone Theory and the Exponential Time Hypothesis , 2013, SODA.

[17]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[18]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[19]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[20]  Gustav Nordh,et al.  Frozen Boolean Partial Co-clones , 2009, 2009 39th International Symposium on Multiple-Valued Logic.

[21]  B. A. Romov The algebras of partial functions and their invariants , 1981 .

[22]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[23]  Peter Jonsson,et al.  Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis , 2014, MFCS.

[24]  Lucien Haddad,et al.  On partial clones containing all idempotent partial operations , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[25]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[26]  Phokion G. Kolaitis,et al.  Structure identification of Boolean relations and plain bases for co-clones , 2008, J. Comput. Syst. Sci..

[27]  Miguel Couceiro,et al.  Finitely Generated Maximal Partial Clones and Their Intersections , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.

[28]  Victor Lagerkvist,et al.  Strong Partial Clones and the Complexity of Constraint Satisfaction Problems : Limitations and Applications , 2015 .

[29]  F. Börner,et al.  Maximal partial clones with no finite basis , 1998 .