A protein complex required for polar growth of rhizobial infection threads

[1]  A. Timmers,et al.  Mechanism of Infection Thread Elongation in Root Hairs of Medicago truncatula and Dynamic Interplay with Associated Rhizobial Colonization1[W][OA] , 2008, Plant Physiology.

[2]  F. Cvrčková,et al.  Evolution of the Land Plant Exocyst Complexes , 2012, Front. Plant Sci..

[3]  J. Stougaard,et al.  The Ethylene Responsive Factor Required for Nodulation 1 (ERN1) Transcription Factor Is Required for Infection-Thread Formation in Lotus japonicus. , 2017, Molecular plant-microbe interactions : MPMI.

[4]  J. Murray Invasion by invitation: rhizobial infection in legumes. , 2011, Molecular plant-microbe interactions : MPMI.

[5]  Colby G Starker,et al.  Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. , 2010, The Plant journal : for cell and molecular biology.

[6]  J. Stougaard,et al.  Legume LysM receptors mediate symbiotic and pathogenic signalling. , 2017, Current opinion in plant biology.

[7]  T. Bisseling,et al.  A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses , 2004, Science.

[8]  Zeng-Yu Wang,et al.  Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of Medicago truncatula1[W][OA] , 2013, Plant Physiology.

[9]  D. Gage Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes , 2004, Microbiology and Molecular Biology Reviews.

[10]  J. Kudla,et al.  New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. , 2009, Molecular plant.

[11]  Christian Rogers,et al.  Standards for plant synthetic biology: a common syntax for exchange of DNA parts. , 2015, The New phytologist.

[12]  J. Šantrůček,et al.  Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes1[OPEN] , 2017, Plant Physiology.

[13]  M. Trick,et al.  NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection1[OPEN] , 2019, Plant Physiology.

[14]  Julien Thouin,et al.  Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations , 2016, Science.

[15]  S. Tabata,et al.  CYCLOPS, a mediator of symbiotic intracellular accommodation , 2008, Proceedings of the National Academy of Sciences.

[16]  M. Parniske,et al.  Lotus japonicus CASTOR and POLLUX Are Ion Channels Essential for Perinuclear Calcium Spiking in Legume Root Endosymbiosis[W] , 2008, The Plant Cell Online.

[17]  T. Bisseling,et al.  Interface Symbiotic Membrane Formation in Root Nodules of Medicago truncatula: the Role of Synaptotagmins MtSyt1, MtSyt2 and MtSyt3 , 2017, Front. Plant Sci..

[18]  M. Fendrych,et al.  The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction , 2011, Journal of experimental botany.

[19]  Leif Schauser,et al.  A plant regulator controlling development of symbiotic root nodules , 1999, Nature.

[20]  J. Downie,et al.  LIN, a Novel Type of U-Box/WD40 Protein, Controls Early Infection by Rhizobia in Legumes1[C][W][OA] , 2009, Plant Physiology.

[21]  D. Ehrhardt,et al.  Calcium Spiking in Plant Root Hairs Responding to Rhizobium Nodulation Signals , 1996, Cell.

[22]  Trevor L. Wang,et al.  SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation , 2015, PLoS genetics.

[23]  M. J. Harrison,et al.  EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis , 2015, Current Biology.

[24]  Estíbaliz Larrainzar,et al.  The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection , 2013, Journal of experimental botany.

[25]  M. Hossain,et al.  Lotus japonicus ARPC1 Is Required for Rhizobial Infection1[W] , 2012, Plant Physiology.

[26]  S. Rasmann,et al.  Cell Wall Maturation of Arabidopsis Trichomes Is Dependent on Exocyst Subunit EXO70H4 and Involves Callose Deposition1[OPEN] , 2015, Plant Physiology.

[27]  T. Bisseling,et al.  NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription , 2005, Science.

[28]  T. Bisseling,et al.  Fate map of Medicago truncatula root nodules , 2014, Development.

[29]  M. Fromm,et al.  An Improved Green Fluorescent Protein Gene as a Vital Marker in Plants , 1996, Plant physiology.

[30]  A. Jauneau,et al.  The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection , 2008, Proceedings of the National Academy of Sciences.

[31]  D. Reinhardt,et al.  Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces , 2011, Plant signaling & behavior.

[32]  Colby G Starker,et al.  Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. , 2010, Molecular plant-microbe interactions : MPMI.

[33]  F. Ariel,et al.  Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis. , 2014, The Plant journal : for cell and molecular biology.

[34]  A. Edwards,et al.  A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Novick,et al.  Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p , 2004, The Journal of cell biology.

[36]  P. Bonfante,et al.  Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. , 2010, Nature communications.

[37]  Shulan Zhang,et al.  A Medicago truncatula Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation1[OPEN] , 2016, Plant Physiology.

[38]  T. Soyano,et al.  NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus , 2013, PLoS genetics.

[39]  David Vaughan,et al.  Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. , 2011, The Plant journal : for cell and molecular biology.

[40]  J. F. Marsh,et al.  Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase1 , 2007, Plant Physiology.

[41]  M. Parniske,et al.  CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. , 2013, Plant & cell physiology.

[42]  T. Bisseling,et al.  Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation , 2012, Proceedings of the National Academy of Sciences.

[43]  Kathryn VandenBosch,et al.  An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction[W] , 2007, The Plant Cell Online.

[44]  A. Emons,et al.  The plant exocyst. , 2010, Journal of integrative plant biology.

[45]  G. Bécard,et al.  Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. , 2001, Molecular plant-microbe interactions : MPMI.

[46]  A. Edwards,et al.  Legume pectate lyase required for root infection by rhizobia , 2011, Proceedings of the National Academy of Sciences.

[47]  Rajasekhara Reddy Duvvuru Muni,et al.  The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. , 2010, The Plant journal : for cell and molecular biology.

[48]  Wei Guo,et al.  The exocyst complex in polarized exocytosis. , 2004, International review of cytology.

[49]  M. J. Harrison,et al.  Exocytosis for endosymbiosis: membrane trafficking pathways for development of symbiotic membrane compartments. , 2017, Current opinion in plant biology.

[50]  Trevor L. Wang,et al.  The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus. , 2017, The New phytologist.

[51]  A. Emons,et al.  Expression and Functional Analyses of EXO70 Genes in Arabidopsis Implicate Their Roles in Regulating Cell Type-Specific Exocytosis1[W][OA] , 2010, Plant Physiology.

[52]  P. Roepstorff,et al.  Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding , 2012, Proceedings of the National Academy of Sciences.

[53]  Kavitha T. Kuppusamy,et al.  LIN, a Medicago truncatula Gene Required for Nodule Differentiation and Persistence of Rhizobial Infections1 , 2004, Plant Physiology.

[54]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[55]  M. Trick,et al.  The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection[W][OPEN] , 2014, Plant Cell.

[56]  P. Bonfante,et al.  Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W] , 2005, The Plant Cell Online.

[57]  Patrick X Zhao,et al.  Large-scale Insertional Mutagenesis Using the Tnt1 Retrotransposon in the Model Legume Medicago Truncatula , 2007 .

[58]  G. Oldroyd Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants , 2013, Nature Reviews Microbiology.

[59]  C. Gutjahr,et al.  Cell and developmental biology of arbuscular mycorrhiza symbiosis. , 2013, Annual review of cell and developmental biology.

[60]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[61]  A. Jauneau,et al.  AP2-ERF Transcription Factors Mediate Nod Factor–Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif[W] , 2007, The Plant Cell Online.

[62]  M. Fendrych,et al.  Exocyst complexes multiple functions in plant cells secretory pathways. , 2013, Current opinion in plant biology.

[63]  F. Martin,et al.  Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria , 2017, Science.

[64]  R. Wrangham,et al.  Legume nodulation , 2014, Current Biology.

[65]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[66]  Jens Stougaard,et al.  The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus , 2010, Nature communications.

[67]  M. Hossain,et al.  Rearrangement of Actin Cytoskeleton Mediates Invasion of Lotus japonicus Roots by Mesorhizobium loti[C][W] , 2009, The Plant Cell Online.

[68]  S. Tabata,et al.  CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. , 2009, The Plant journal : for cell and molecular biology.

[69]  E. Limpens,et al.  Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair1 , 2015, Plant Physiology.

[70]  D. Barker,et al.  Nuclear Ca2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. , 2017, The New phytologist.

[71]  P. Poole,et al.  The rules of engagement in the legume-rhizobial symbiosis. , 2011, Annual review of genetics.

[72]  Julia Frugoli,et al.  The Medicago truncatula SUNN Gene Encodes a CLV1-like Leucine-rich Repeat Receptor Kinase that Regulates Nodule Number and Root Length , 2005, Plant Molecular Biology.

[73]  T. Bisseling,et al.  Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. , 2012, Plant & cell physiology.

[74]  G. Walker,et al.  Succinoglycan Is Required for Initiation and Elongation of Infection Threads during Nodulation of Alfalfa byRhizobium meliloti , 1998, Journal of bacteriology.

[75]  J. F. Marsh,et al.  Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators , 2005, Science.

[76]  M. Kawaguchi,et al.  Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus , 2014, Plant signaling & behavior.

[77]  I. Jourdain,et al.  The Exocyst Complex in Health and Disease , 2016, Front. Cell Dev. Biol..

[78]  J. Downie,et al.  Coordinating nodule morphogenesis with rhizobial infection in legumes. , 2008, Annual review of plant biology.

[79]  James K. Hane,et al.  A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution , 2016, Plant biotechnology journal.

[80]  G. Duc,et al.  Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis , 1995 .