Exact approaches to the single‐source network loading problem

This article considers the network design problem that searches for a minimum-cost way of installing capacities on the edges of a network to simultaneously route a flow from a given access point to a subset of nodes representing customers with positive demands. We first consider compact and exponential-sized Mixed Integer Programming (MIP) formulations of the problem and provide their theoretical and computational comparison. We also consider a stronger disaggregated flow formulation. To solve the problem in practice, we project out the flow variables and generate Benders cuts within a branch-and-cut framework. To the best of our knowledge, the combination of Benders approach and this specific disaggregation has not been considered so far. In an extensive computational study, we compare the performance of compact MIP models against a textbook implementation and several normalization variants of Benders decomposition. We introduce a set of 32 real-world instances and use these, together with 64 other instances from the literature, to test our approaches. The results show that our branch-and-cut approach outperforms the best performing compact formulation leading to the best exact algorithm today for solving the considered dataset. © 2011 Wiley Periodicals, Inc. NETWORKS, 2012

[1]  Alysson M. Costa A survey on benders decomposition applied to fixed-charge network design problems , 2005, Comput. Oper. Res..

[2]  Nikolaos Papadakos,et al.  Practical enhancements to the Magnanti-Wong method , 2008, Oper. Res. Lett..

[3]  Michael Poss,et al.  An improved Benders decomposition applied to a multi-layer network design problem , 2009, Oper. Res. Lett..

[4]  Thomas L. Magnanti,et al.  Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..

[5]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[6]  Tim Roughgarden,et al.  Approximation via cost sharing , 2007, J. ACM.

[7]  Thomas L. Magnanti,et al.  Tailoring Benders decomposition for uncapacitated network design , 1986 .

[8]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[9]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[10]  Daniel Bienstock,et al.  Asymptotic analysis of the flow deviation method for the maximum concurrent flow problem , 2002, Math. Program..

[11]  Geir Dahl,et al.  A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems , 1998, INFORMS J. Comput..

[12]  Antonio Frangioni,et al.  0-1 Reformulations of the Multicommodity Capacitated Network Design Problem , 2009, Discret. Appl. Math..

[13]  Michel Gendreau,et al.  Accelerating Benders Decomposition by Local Branching , 2009, INFORMS J. Comput..

[14]  Thomas L. Magnanti,et al.  Modeling and Solving the Two-Facility Capacitated Network Loading Problem , 1995, Oper. Res..

[15]  Jean-Yves Potvin,et al.  Tabu Search for a Network Loading Problem with Multiple Facilities , 2000, J. Heuristics.

[16]  Daliborka Stanojević,et al.  A Note on Search by Objective Relaxation , 2006 .

[17]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[18]  Martin W. P. Savelsbergh,et al.  Bidirected and unidirected capacity installation in telecommunication networks , 2003, Discret. Appl. Math..

[19]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[20]  R. Ravi,et al.  Solving the Capacitated Local Access Network Design Problem , 2008, INFORMS J. Comput..

[21]  Francisco Barahona,et al.  Network Design Using Cut Inequalities , 1996, SIAM J. Optim..

[22]  Oktay Günlük,et al.  A branch-and-cut algorithm for capacitated network design problems , 1999, Math. Program..

[23]  Fabrizio Grandoni,et al.  Improved Approximation for Single-Sink Buy-at-Bulk , 2006, ISAAC.

[24]  George L. Nemhauser,et al.  Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..

[25]  Matteo Fischetti,et al.  An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem , 2006, Math. Program..

[26]  Itzhak Gilboa,et al.  Source Sink Flows with Capacity Installation in Batches , 1998, Discret. Appl. Math..

[27]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[28]  Matteo Fischetti,et al.  A note on the selection of Benders’ cuts , 2010, Math. Program..

[29]  Bezalel Gavish,et al.  Backbone Network Design Tools with Economic Tradeoffs , 1990, INFORMS J. Comput..

[30]  Antonio Sassano,et al.  Metric Inequalities and the Network Loading Problem , 2004, IPCO.

[31]  M. R. Rao,et al.  The Steiner tree problem I: Formulations, compositions and extension of facets , 1994, Math. Program..

[32]  Mervat Chouman,et al.  A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design , 2009 .

[33]  M. Stoer,et al.  A polyhedral approach to multicommodity survivable network design , 1994 .

[34]  Michel Minoux,et al.  Exact solution of multicommodity network optimization problems with general step cost functions , 1999, Oper. Res. Lett..

[35]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[36]  Oktay Günlük,et al.  Minimum cost capacity installation for multicommodity network flows , 1998, Math. Program..

[37]  Antonio Frangioni,et al.  A stabilized structured Dantzig–Wolfe decomposition method , 2012, Mathematical Programming.

[38]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[39]  Alysson M. Costa,et al.  Benders, metric and cutset inequalities for multicommodity capacitated network design , 2009, Comput. Optim. Appl..

[40]  R. Ravi,et al.  Approximating the Single-Sink Link-Installation Problem in Network Design , 2001, SIAM J. Optim..