Trellis shaping

The author discusses trellis shaping, a method of selecting a minimum-weight sequence from an equivalence class of possible transmitted sequences by a search through the trellis diagram of a shaping convolutional code C/sub s/. Shaping gains on the order of 1 dB may be obtained with simple four-state shaping codes and with moderate constellation expansion. The shaping gains obtained with more complicated codes approach the ultimate shaping gain of 1.53 dB. With a feedback-free syndrome-former for C/sub s/, transmitted data can be recovered without catastrophic error propagation. Constellation expansion and peak-to-average energy ratio may be effectively limited by peak constraints. With lattice-theoretic constellations, the shaping operation may be characterized as a decoding of an initial sequence in a channel trellis code by a minimum-distance decoder for a shaping trellis code based on the shaping convolutional code, and the set of possible transmitted sequences is then the set of code sequences in the channel trellis code that lie in the Voronoi region of the trellis shaping code. >

[1]  G. David Forney,et al.  Trellis precoding: Combined coding, precoding and shaping for intersymbol interference channels , 1992, IEEE Trans. Inf. Theory.

[2]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[3]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[4]  A. Calderbank,et al.  An eight-dimensional trellis code , 1986, Proceedings of the IEEE.

[5]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[6]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[7]  A. R. Calderbank,et al.  Four-dimensional modulation with an eight-state trellis code , 1985, AT&T Technical Journal.

[8]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[9]  A. Robert Calderbank,et al.  Nonequiprobable signaling on the Gaussian channel , 1990, IEEE Trans. Inf. Theory.

[10]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[11]  Frank R. Kschischang,et al.  Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.

[12]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[15]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[16]  R. Gallager Information Theory and Reliable Communication , 1968 .

[17]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[18]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[19]  N. J. A. Sloane,et al.  A lower bound on the average error of vector quantizers , 1985, IEEE Trans. Inf. Theory.

[20]  J. N. Livingston Shaping gains using non-equiprobable signaling , 1990, [Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and Exhibition.

[21]  G. David Forney,et al.  Structural analysis of convolutional codes via dual codes , 1973, IEEE Trans. Inf. Theory.

[22]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[23]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..