On the Bayesian Cramér-Rao Bound for Markovian Switching Systems
暂无分享,去创建一个
[1] Kristine L. Bell,et al. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .
[2] Y. Bar-Shalom,et al. The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .
[3] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..
[4] H. V. Trees. Detection, Estimation, And Modulation Theory , 2001 .
[5] Abhijit Sinha,et al. PCRLB-based multisensor array management for multitarget tracking , 2007 .
[6] A. Farina,et al. Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.
[7] Xin Zhang,et al. Dynamic Cramer-Rao bound for target tracking in clutter , 2005, IEEE Transactions on Aerospace and Electronic Systems.
[8] M. Melamed. Detection , 2021, SETI: Astronomy as a Contact Sport.
[9] Niclas Bergman,et al. Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .
[10] A. Gualtierotti. H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .
[11] Y. Bar-Shalom,et al. Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.
[12] A. Farina,et al. Performance measure for Markovian switching systems using best-fitting Gaussian distributions , 2008, IEEE Transactions on Aerospace and Electronic Systems.
[13] A. Farina,et al. PCRLB for tracking in cluttered environments: measurement sequence conditioning approach , 2006, IEEE Transactions on Aerospace and Electronic Systems.
[14] Petr Tichavský,et al. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..