Processing time-constrained aggregate queries in CASE-DB

In this paper, we present an algorithm to strictly control the time to process an estimator for an aggregate relational query. The algorithm implemented in a prototype database management system, called CASE-DB, iteratively samples from input relations, and evaluates the associated estimator until the time quota expires. In order to estimate the time cost of a query, CASE-DB uses adaptive time cost formulas. The formulas are adaptive in that the parameters of the formulas can be adjusted at runtime to better fit the characteristics of a query. To control the use of time quota, CASE-DB adopts the one-at-a-time-interval time control strategy to make a tradeoff between the risks of overspending and the overhead, finally, experimental evaluation of the methodology is presented.

[1]  Wen-Chi Hou,et al.  Statistical estimators for aggregate relational algebra queries , 1991, TODS.

[2]  John A. Stankovic,et al.  On real-time transactions , 1988, SGMD.

[3]  Hector Garcia-Molina,et al.  Scheduling Real-Time Transactions with Disk Resident Data , 1989, VLDB.

[4]  Stavros Christodoulakis,et al.  Estimating record selectivities , 1983, Inf. Syst..

[5]  Miron Livny,et al.  Priority in DBMS Resource Scheduling , 1989, VLDB.

[6]  David J. DeWitt,et al.  Equi-depth multidimensional histograms , 1988, SIGMOD '88.

[7]  Kwei-Jay Lin,et al.  Enhancing availability in distributed real-time databases , 1988, SGMD.

[8]  Michael V. Mannino,et al.  Statistical profile estimation in database systems , 1988, CSUR.

[9]  Umeshwar Dayal,et al.  Time-critical database scheduling: a framework for integrating real-time scheduling and concurrency control , 1989, [1989] Proceedings. Fifth International Conference on Data Engineering.

[10]  Mukesh Singhal,et al.  Issues and approaches to design of real-time database systems , 1988, SGMD.

[11]  Doron Rotem,et al.  Random Sampling from B+ Trees , 1989, VLDB.

[12]  Patricia G. Selinger,et al.  Access path selection in a relational database management system , 1979, SIGMOD '79.

[13]  Wen-Chi Hou,et al.  Relational aggregate query processing techniques for real-time databases , 1989 .

[14]  Donald F. Towsley,et al.  Experimental evaluation of real-time transaction processing , 1989, [1989] Proceedings. Real-Time Systems Symposium.

[15]  Jacob Paul Morgenstein Computer based management information systems embodying answer accuracy as a user parameter , 1981 .

[16]  Umeshwar Dayal,et al.  The HiPAC project: combining active databases and timing constraints , 1988, SGMD.

[17]  Hector Garcia-Molina,et al.  Scheduling real-time transactions: a performance evaluation , 1988, TODS.

[18]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[19]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[20]  Wen-Chi Hou,et al.  Statistical estimators for relational algebra expressions , 1988, PODS '88.

[21]  Gregory Piatetsky-Shapiro,et al.  Accurate estimation of the number of tuples satisfying a condition , 1984, SIGMOD '84.

[22]  Klaus R. Dittrich,et al.  Kardamom—a dataflow database machine for real-time applications , 1988, SGMD.

[23]  Neil C. Rowe,et al.  Antisampling for Estimation: An Overview , 1985, IEEE Transactions on Software Engineering.

[24]  Doron Rotem,et al.  Simple Random Sampling from Relational Databases , 1986, VLDB.

[25]  Ping Xu,et al.  Random sampling from hash files , 1990, SIGMOD '90.

[26]  Umeshwar Dayal,et al.  The architecture of an active database management system , 1989, SIGMOD '89.

[27]  L. A. Goodman On the Estimation of the Number of Classes in a Population , 1949 .

[28]  F.P.G. Pötgens,et al.  Netherlands , 1983, The Lancet.