State-of-the-art of methane sensing materials: A review and perspectives

[1]  Y. Lei,et al.  Atomic layer deposition of Rh nanoparticles on WO3 thin film for CH4 gas sensing with enhanced detection characteristics , 2020 .

[2]  M. Sheikhi,et al.  High-Performance Room Temperature Methane Gas Sensor Based on Lead Sulfide/Reduced Graphene Oxide Nanocomposite , 2020, IEEE Sensors Journal.

[3]  Xiao-jie Li,et al.  Enhanced CH4 sensitivity of porous nanosheets-assembled ZnO microflower by decoration with Zn2SnO4 , 2020 .

[4]  Yan Wang,et al.  Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance , 2019 .

[5]  N. Shaalan,et al.  Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties , 2019, Materials.

[6]  S. Phanichphant,et al.  Effects of reduced graphene oxide loading on gas-sensing characteristics of flame-made Bi2WO6 nanoparticles , 2019 .

[7]  Yu Fu,et al.  Sensitized mechanism of recovered S-SnO2 from tin sludge for CH4 detection by increasing oxygen vacancy density as an efficient strategy , 2019, Sensors and Actuators B: Chemical.

[8]  Guang Sun,et al.  Synthesis of g-C3N4-Decorated ZnO Porous Hollow Microspheres for Room-Temperature Detection of CH4 under UV-Light Illumination , 2019, Nanomaterials.

[9]  Jiajun Wang,et al.  Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics , 2019, Frontiers of Materials Science.

[10]  S. Raghuwanshi,et al.  Ultra-Sensitive Fiber Optic Gas Sensor Using Graphene Oxide Coated Long Period Gratings , 2019, IEEE Photonics Technology Letters.

[11]  Hong‐Cai Zhou,et al.  Metal-Organic Frameworks for Food Safety. , 2019, Chemical reviews.

[12]  Yan Wang,et al.  Enhanced CH4 sensing properties of Pd modified ZnO nanosheets , 2019, Ceramics International.

[13]  Simon S. Park,et al.  High-Performance, Room Temperature Hydrogen Sensing With a Cu-BTC/Polyaniline Nanocomposite Film on a Quartz Crystal Microbalance , 2019, IEEE Sensors Journal.

[14]  Christopher E Wilmer,et al.  Intelligent selection of metal-organic framework arrays for methane sensing via genetic algorithms. , 2019, ACS sensors.

[15]  C. Stinespring,et al.  Direct Ink Writing of Graphene-Based Solutions for Gas Sensing , 2019, ACS Applied Nano Materials.

[16]  B. Zhang,et al.  Synthesis of a Flower-Like g-C3N4/ZnO Hierarchical Structure with Improved CH4 Sensing Properties , 2019, Nanomaterials.

[17]  D. Panda,et al.  SnO­2 Tailored by CuO for Improved CH4 Sensing at Low Temperature , 2019, physica status solidi (b).

[18]  Weigen Chen,et al.  Synthesis and Application of Ag2O Doped ZnO Based Sensor for Detecting CH4 Gas , 2019, 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE).

[19]  S. Sarkar,et al.  Fabrication of Au-Modified Mixed Metal Oxide Methane Gas Sensor and Experimentation for Better Performance , 2019, Sensor Letters.

[20]  Arezoo Emadi,et al.  Advanced Micro- and Nano-Gas Sensor Technology: A Review , 2019, Sensors.

[21]  S. Ilyas,et al.  Synthesis and characterization of magnesium doped ZnO nanostructures: methane (CH4) detection , 2019, Journal of Materials Science: Materials in Electronics.

[22]  A. Rashidi,et al.  Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid , 2019, Sensors and Actuators B: Chemical.

[23]  Yan Zhou,et al.  Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development , 2019, Sensors.

[24]  Yong Liang Guan,et al.  Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications , 2018, Coordination Chemistry Reviews.

[25]  N. Motta,et al.  Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide , 2018, Applied Surface Science.

[26]  R. Pyare,et al.  A Nano‐Wrinkled Zn 0.92 Fe 0.08 O Thin Film Developed Using a High‐RPM Electro‐Spin Patterning Technique via Sol‐Gel Route For Methane Sensing , 2018, ChemistrySelect.

[27]  Shuangchen Ruan,et al.  Recent development in nanocarbon materials for gas sensor applications , 2018, Sensors and Actuators B: Chemical.

[28]  Luca Ottaviano,et al.  2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene , 2018, Sensors.

[29]  Xiao-feng Wu,et al.  Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing , 2018, ACS Applied Nano Materials.

[30]  K. Kumari,et al.  Sensitivity Study of Nanocrystalline Fe3BO6 Sensor for Methane Gas Detection , 2018, IEEE Sensors Journal.

[31]  Liang Feng,et al.  From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. , 2018, Chemical Society reviews.

[32]  T. Swager,et al.  Carbon Nanotube Chemical Sensors. , 2018, Chemical reviews.

[33]  Alan X. Wang,et al.  Nucleation and growth of oriented metal-organic framework thin films on thermal SiO2 surface , 2018, Thin Solid Films.

[34]  C. Wilmer,et al.  Optimizing information content in MOF sensor arrays for analyzing methane-air mixtures , 2018, Sensors and Actuators B: Chemical.

[35]  S. Sonawane,et al.  Polyaniline/zinc oxide nanocomposite as room-temperature sensing layer for methane , 2018 .

[36]  Xiao-feng Wu,et al.  Synthesis of Pd-loaded mesoporous SnO2 hollow spheres for highly sensitive and stable methane gas sensors , 2018, RSC advances.

[37]  P. Bénard,et al.  Experimental benchmark data of CH4, CO2 and N2 binary and ternary mixtures adsorption on MOF-5 , 2018 .

[38]  Weigen Chen,et al.  Hydrothermal Synthesis of Hierarchical Ultrathin NiO Nanoflakes for High-Performance CH4 Sensing , 2018, Front. Chem..

[39]  Kyriakos C. Stylianou,et al.  Electronic metal–organic framework sensors , 2018 .

[40]  Kevin P. Chen,et al.  Fiber Optical Sensor for Methane Detection Based on Metal-Organic Framework/Silicone Polymer Coating , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[41]  Qingyan Zhang,et al.  Facile Hydrothermal Synthesis and Enhanced Methane Sensing Properties of Pt-Decorated ZnO Nanosheets. , 2018, Journal of nanoscience and nanotechnology.

[42]  A. Di Carlo,et al.  Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. , 2018, Talanta.

[43]  Hongwei Song,et al.  A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection , 2018, NPG Asia Materials.

[44]  Shaomin Liu,et al.  Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4 , 2018 .

[45]  Ki-Joong Kim,et al.  Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide , 2018 .

[46]  A. Goldoni,et al.  Advanced promising routes of carbon/metal oxides hybrids in sensors: A review , 2018 .

[47]  Xiaoxia Jia,et al.  (CH3)2NH‐Assisted Synthesis of High‐Purity Ni‐HKUST‐1 for the Adsorption of CO2, CH4, and N2 , 2018 .

[48]  S. Kaliaguine,et al.  In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control , 2018 .

[49]  J. Urban,et al.  Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review , 2018 .

[50]  Ki-Joong Kim,et al.  Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. , 2018, ACS sensors.

[51]  Jonathan W. Lekse,et al.  Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. , 2017, Nanoscale.

[52]  Lingzhang Zhu,et al.  Room-temperature gas sensing of ZnO-based gas sensor: A review , 2017 .

[53]  Emma M. Stewart,et al.  Chemical Sensing Strategies for Real-Time Monitoring of Transformer Oil: A Review , 2017, IEEE Sensors Journal.

[54]  J. Zhang,et al.  Sensitization of an optical fiber methane sensor with graphene , 2017 .

[55]  Bolong Huang,et al.  Room-temperature methane gas sensing properties based on in situ reduced graphene oxide incorporated with tin dioxide , 2017 .

[56]  A. S. Bolokang,et al.  Room temperature ferromagnetism and CH4 gas sensing of titanium oxynitride induced by milling and annealing , 2017 .

[57]  A. Sokolov,et al.  Gas separation mechanism of CO2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes , 2017 .

[58]  Mukesh Yadav Optimization of a polymer layer highly doped with Cryptophane-A for methane sensing , 2017 .

[59]  M. Sheikhi,et al.  Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route , 2017 .

[60]  S. Dai,et al.  Porous Structure Design of Polymeric Membranes for Gas Separation , 2017 .

[61]  Max C. Lemme,et al.  Graphene-based CO2 sensing and its cross-sensitivity with humidity , 2017 .

[62]  David W. Greve,et al.  SAW Sensors for Chemical Vapors and Gases , 2017, Sensors.

[63]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[64]  Christopher E. Wilmer,et al.  Computational Design of Metal–Organic Framework Arrays for Gas Sensing: Influence of Array Size and Composition on Sensor Performance , 2017 .

[65]  Hongxia Xi,et al.  A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation , 2017 .

[66]  Jiao Wang,et al.  A review of recent developments in tin dioxide composites for gas sensing application , 2016 .

[67]  S. Saǧlam,et al.  Titanium Dioxide Thin Films as Methane Gas Sensors , 2016, IEEE Sensors Journal.

[68]  M. Hu,et al.  Room temperature CH4 sensing properties of Au decorated VO2 nanosheets , 2016 .

[69]  M. Hu,et al.  Preparation and room temperature methane sensing properties of platinum-decorated vanadium oxide films , 2016 .

[70]  D. Ramimoghadam,et al.  Review of polymers of intrinsic microporosity for hydrogen storage applications , 2016 .

[71]  Kevin P. Chen,et al.  Fiber Optical Methane Sensors Using Functional Metal Oxide Nanomaterials , 2016 .

[72]  I. Parkin,et al.  Controlling the Cross-Sensitivity of Carbon Nanotube-Based Gas Sensors to Water Using Zeolites. , 2016, ACS applied materials & interfaces.

[73]  Li Na,et al.  Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature , 2016 .

[74]  K. Khojier,et al.  Investigation on the Electrical and Methane Gas-Sensing Properties of ZnO Thin Films Produced by Different Methods , 2016, Journal of Electronic Materials.

[75]  M. Hu,et al.  Synthesis and room temperature CH4 gas sensing properties of vanadium dioxide nanorods , 2016 .

[76]  Nagih M. Shaalan,et al.  Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles , 2016 .

[77]  Christopher W. Jones,et al.  Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. , 2016, ACS applied materials & interfaces.

[78]  P. Sekhar,et al.  Development and testing of an electrochemical methane sensor , 2016 .

[79]  O. Ntwaeaborwa,et al.  Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment , 2016 .

[80]  Jie Hu,et al.  Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing , 2016 .

[81]  Y. Mortazavi,et al.  Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures , 2016 .

[82]  O. Wolfbeis,et al.  Fiber-Optic Chemical Sensors and Biosensors (2013-2015). , 2016, Analytical chemistry.

[83]  Wen Wang,et al.  Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating , 2016, Sensors.

[84]  Iole Venditti,et al.  Chemiresistive polyaniline-based gas sensors: A mini review , 2015 .

[85]  N. Shah,et al.  Room temperature gas sensors based on carboxyl and thiol functionalized carbon nanotubes buckypapers , 2015 .

[86]  C. Banks,et al.  The latest developments in the analytical sensing of methane , 2015 .

[87]  Sunil P. Lonkar,et al.  Recent advances in graphene based gas sensors , 2015 .

[88]  Wai Fen Yong,et al.  Suppression of aging and plasticization in highly permeable polymers , 2015 .

[89]  M. Sheikhi,et al.  Effect of silver additive on electrical conductivity and methane sensitivity of SnO2 , 2015 .

[90]  Samir A. Belhout,et al.  Recent developments in carbon nanomaterial sensors. , 2015, Chemical Society reviews.

[91]  Shinya Hayami,et al.  Recent progress in applications of graphene oxide for gas sensing: A review. , 2015, Analytica chimica acta.

[92]  Stephen R. Leone,et al.  HKUST-1 thin film layer-by-layer liquid phase epitaxial growth: film properties and stability dependence on layer number , 2015 .

[93]  Xiufen Yan,et al.  Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method , 2015 .

[94]  Paul R. Ohodnicki,et al.  Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption , 2015 .

[95]  B. D. Gupta,et al.  Surface Plasmon Resonance-Based Fiber Optic Methane Gas Sensor Utilizing Graphene-Carbon Nanotubes-Poly(Methyl Methacrylate) Hybrid Nanocomposite , 2015, Plasmonics.

[96]  A. P. Rambu,et al.  Efficient methane detection by Co doping of ZnO thin films , 2015 .

[97]  Jianchun Yang,et al.  Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition , 2015 .

[98]  A. Gölzhäuser,et al.  Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation , 2014 .

[99]  Chae-Ho Shin,et al.  Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion , 2014 .

[100]  M. Sheikhi,et al.  Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2 , 2014 .

[101]  Paul R. Ohodnicki,et al.  High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides , 2014 .

[102]  Ming Li,et al.  Tuning CO₂ selective adsorption over N₂ and CH₄ in UiO-67 analogues through ligand functionalization. , 2014, Inorganic chemistry.

[103]  A. Reyhani,et al.  Synthesize of polyaniline–multi walled carbon nanotubes composite on the glass and silicon substrates and methane gas sensing behavior of them at room temperature , 2014 .

[104]  Hiranmay Saha,et al.  Effect of Annealing Temperature on the Morphology and Sensitivity of the Zinc Oxide Nanorods-Based Methane Senor , 2014, Acta Metallurgica Sinica (English Letters).

[105]  Paul R. Ohodnicki,et al.  Optical gas sensing responses in transparent conducting oxides with large free carrier density , 2014 .

[106]  Pascal Robert,et al.  Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy. Calibration and application to the external part of the Central Alps (Switzerland) , 2014 .

[107]  Kwang S. Kim,et al.  Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. , 2014, ACS applied materials & interfaces.

[108]  I. Pinnau,et al.  Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1 , 2014 .

[109]  Toshio Itoh,et al.  Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases , 2014, Sensors.

[110]  S. Dai,et al.  Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates , 2014, Nature Communications.

[111]  S. Mathur,et al.  Ink‐jet Printing of Hollow SnO2 Nanospheres for Gas Sensing Applications , 2014 .

[112]  C. Roychaudhuri,et al.  Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. , 2014, ACS applied materials & interfaces.

[113]  S. Majumder,et al.  Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis. , 2014, The Analyst.

[114]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[115]  Yong-Shik Han,et al.  Ni2O3-decorated SnO2 particulate films for methane gas sensors , 2014 .

[116]  S. Dash,et al.  Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature , 2014, 1509.00203.

[117]  Martina Abb,et al.  Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. , 2014, Nano letters.

[118]  J. Dutta,et al.  Zinc Oxide Nano-Platelets for Effective Methane Gas-Sensing Applications , 2013 .

[119]  Shaohua Wu,et al.  Tunable multi-mode diode laser absorption spectroscopy for methane detection , 2013 .

[120]  Paul R. Ohodnicki,et al.  Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications , 2013 .

[121]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[122]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[123]  Vinay Gupta,et al.  Study of collective efforts of catalytic activity and photoactivation to enhance room temperature response of SnO2 thin film sensor for methane , 2013 .

[124]  E. Llobet Gas sensors using carbon nanomaterials: A review , 2013 .

[125]  M. Pinto,et al.  Composite MOF foams: the example of UiO-66/polyurethane. , 2013, ACS applied materials & interfaces.

[126]  A. P. Rambu,et al.  Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method , 2013, Journal of Materials Science.

[127]  A. O. Yazaydin,et al.  A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon , 2013 .

[128]  Bin Liu,et al.  Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film , 2013, IEEE Sensors Journal.

[129]  O. Wolfbeis,et al.  Fiber-optic chemical sensors and biosensors (2008-2012). , 2013, Analytical chemistry.

[130]  S. Roy,et al.  ZnO nanoflake based metal-insulator-metal methane sensor for underground coalmine application , 2012, 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS).

[131]  J. Xu,et al.  A novel methane sensor based on porous SnO2 nanorods: room temperature to high temperature detection , 2012, Nanotechnology.

[132]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[133]  Mehmet S. Kizil,et al.  A review of developments in near infrared methane detection based on tunable diode laser , 2012 .

[134]  A. P. Rambu,et al.  Effect of In incorporation on the structural, electrical, and gas sensing properties of ZnO films , 2012, Journal of Materials Science.

[135]  Santiago Marco,et al.  A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results , 2012 .

[136]  Vinay Gupta,et al.  Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection , 2012 .

[137]  M. Anbia,et al.  Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide , 2012 .

[138]  C. K. Sarkar,et al.  Ultrasensitive Pd–Ag/ZnO/Nickel Alloy-Based Metal–Insulator-Metal Methane Sensor on Micromachined Silicon Substrate , 2012, IEEE Sensors Journal.

[139]  Matthew C. Dixon,et al.  Kinetics and mechanism of metal–organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes , 2012 .

[140]  Thomas Maier,et al.  Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors , 2012 .

[141]  S. Mekala,et al.  Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity , 2012 .

[142]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[143]  Kea-Tiong Tang,et al.  A review of sensor-based methods for monitoring hydrogen sulfide , 2012 .

[144]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[145]  Behraad Bahreyni,et al.  Highly sensitive supra-molecular thin films for gravimetric detection of methane , 2012 .

[146]  B. Adhikari,et al.  H3PO4-Doped DL-PLA/PANI Conductive Composite for Methane Gas Sensing: Polymer Composite for Gas Sensing , 2011, 2011 International Conference on Nanoscience, Technology and Societal Implications.

[147]  Partha Bhattacharyya,et al.  The effect of surface modification and catalytic metal contact on methane sensing performance of nano-ZnO-Si heterojunction sensor , 2011, Microelectron. Reliab..

[148]  Prabir K. Dutta,et al.  Development of high sensitivity potentiometric NOx sensor and its application to breath analysis , 2011 .

[149]  Li-Chun Wang,et al.  A Single-Walled Carbon Nanotube Network Gas Sensing Device , 2011, Sensors.

[150]  Jianchun Yang,et al.  Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane , 2011 .

[151]  Weimin Chen,et al.  Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection. , 2011, Optics express.

[152]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[153]  A. Terfort,et al.  Rapid Room‐Temperature Synthesis of Metal–Organic Framework HKUST‐1 Crystals in Bulk and as Oriented and Patterned Thin Films , 2011 .

[154]  Byeong Kwon Ju,et al.  Micromachined catalytic combustible hydrogen gas sensor , 2011 .

[155]  G. S. Larsen,et al.  Methane adsorption in PIM-1 , 2011 .

[156]  Y. Wen,et al.  Dependence of morphologies for SnO2 nanostructures on their sensing property , 2011 .

[157]  H. Saha,et al.  CBD Grown Aligned ZnO Nanorods Based Methane Sensor and the Effect of Pd Sensitization , 2010 .

[158]  Yuelin Wang,et al.  Behaviour of a catalytic combustion methane gas sensor working on pulse mode , 2010, 2010 IEEE Sensors.

[159]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[160]  Giorgio Sberveglieri,et al.  1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases , 2010 .

[161]  G. Pirngruber,et al.  CO2 and CH4 Separation by Adsorption Using Cu-BTC Metal−Organic Framework , 2010 .

[162]  P. K. Basu,et al.  Methane Detection by MIM Sensor Devices Based on Nano ZnO Thin Films Obtained by Sol-Gel and by Anodization: A Comparative Study , 2010, 2010 First International Conference on Sensor Device Technologies and Applications.

[163]  Hiroshi Uji-i,et al.  Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions , 2010, Advanced materials.

[164]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[165]  Yadong Jiang,et al.  Fabrication of methane gas sensor by layer-by-layer self-assembly of polyaniline/PdO ultra thin films on quartz crystal microbalance , 2010 .

[166]  Shuguang Deng,et al.  Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A. , 2010, Environmental science & technology.

[167]  Yadong Jiang,et al.  A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor , 2009 .

[168]  S. Pratsinis,et al.  Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions , 2009, Nanotechnology.

[169]  D. Pribat,et al.  Carbon nanotubes based transistors as gas sensors: State of the art and critical review , 2009 .

[170]  Martin M. F. Choi,et al.  Methane sensor based on nanocomposite of palladium/multi-walled carbon nanotubes grafted with 1,6-hexanediamine , 2009 .

[171]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[172]  C. Dong,et al.  Methane sensor based on palladium/MWNT nanocomposites , 2009 .

[173]  Berend Smit,et al.  Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[174]  Marc Marshall,et al.  CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X) , 2009 .

[175]  W. Shin,et al.  Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis , 2009 .

[176]  A. Köck,et al.  Tin oxide nanocrystalline films and nanowires for gas sensing applications , 2009 .

[177]  Yan Zhang,et al.  Mode-filtered light methane gas sensor based on cryptophane A. , 2009, Analytica chimica acta.

[178]  Hiranmay Saha,et al.  Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films , 2008 .

[179]  Partha Bhattacharyya,et al.  A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane , 2008, Microelectron. Reliab..

[180]  T. Bein,et al.  Direct growth of Cu3(BTC)2(H2O)3 · xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms , 2008 .

[181]  Hiranmay Saha,et al.  The superior performance of the electrochemically grown ZnO thin films as methane sensor , 2008 .

[182]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[183]  Hiranmay Saha,et al.  Noble metal catalytic contacts to sol-gel nanocrystalline zinc oxide thin films for sensing methane , 2008 .

[184]  Hiranmay Saha,et al.  Methane Sensing Properties of Platinum Catalysed Nano Porous Zinc Oxide Thin Films Derived by Electrochemical Anodization , 2008 .

[185]  P. K. Basu,et al.  MEMS based nano crystalline zinc oxide methane gas sensors , 2007, 2007 International Workshop on Physics of Semiconductor Devices.

[186]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[187]  Benny D. Freeman,et al.  Pure and mixed gas CH4 and n-C4H10 sorption and dilation in poly(1-trimethylsilyl-1-propyne) , 2007 .

[188]  Partha Mitra,et al.  ZnO thin film as methane sensor , 2007 .

[189]  Hiranmay Saha,et al.  Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method , 2007 .

[190]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[191]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[192]  Hua Bai,et al.  Gas Sensors Based on Conducting Polymers , 2007, Sensors (Basel, Switzerland).

[193]  Hiranmay Saha,et al.  Deposition of nanocrystalline ZnO thin films on p-Si by novel galvanic method and application of the heterojunction as methane sensor , 2007 .

[194]  R. P. Tandon,et al.  MoO3-based sensor for NO, NO2 and CH4 detection , 2006 .

[195]  Hiranmay Saha,et al.  Fast Response Methane Sensor Based on Pd(Ag)/ZnO/Zn MIM Structure , 2006 .

[196]  Himadri Sekhar Maiti,et al.  Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors , 2006 .

[197]  N. Lawrence Analytical detection methodologies for methane and related hydrocarbons. , 2006, Talanta.

[198]  Udo Weimar,et al.  Water–oxygen interplay on tin dioxide surface: Implication on gas sensing , 2005 .

[199]  Nicole Jaffrezic-Renault,et al.  Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules , 2005 .

[200]  Ghenadii Korotcenkov,et al.  Gas Response Control Through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches , 2005 .

[201]  M. Buongiorno Nardelli,et al.  Carbon nanotube-metal cluster composites: a new road to chemical sensors? , 2005, Nano letters.

[202]  Himadri Sekhar Maiti,et al.  Methane sensitivity of fe-doped SnO2 thick films , 2005 .

[203]  M. Meyyappan,et al.  Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors , 2004 .

[204]  B. H. Weiller,et al.  Nanostructured polyaniline sensors. , 2004, Chemistry.

[205]  I. Eisele,et al.  Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures , 2003 .

[206]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[207]  J. W. Gardner,et al.  Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors , 2003, Microelectron. J..

[208]  Fabienne Poncin-Epaillard,et al.  Polyaniline as a new sensitive layer for gas sensors , 2003 .

[209]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[210]  R. P. Tandon,et al.  Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites , 2002 .

[211]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[212]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2001, cond-mat/0110375.

[213]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[214]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[215]  Beat Müller,et al.  Determination of methane and other small hydrocarbons with a platinum–Nafion electrode by stripping voltammetry , 2001 .

[216]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[217]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[218]  R. Ionescu,et al.  Role of water vapour in the interaction of SnO2 gas sensors with CO and CH4 , 1999 .

[219]  Partha Mitra,et al.  Chemically deposited zinc oxide thin film gas sensor , 1999 .

[220]  T. Kunzelmann,et al.  Contactless surface acoustic wave gas sensor , 1999 .

[221]  H. Meixner,et al.  SELECTIVE DETECTION OF METHANE IN DOMESTIC ENVIRONMENTS USING A CATALYST SENSOR SYSTEM BASED ON GA2O3 , 1998 .

[222]  Jeung-Soo Huh,et al.  Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst , 1997 .

[223]  Philippe Dondon,et al.  Development of a reliable methane detector , 1997 .

[224]  E. Souteyrand,et al.  Behaviour Of Cryptophane Molecules In Gas Media , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[225]  R. Srinivasan,et al.  Elucidating the mechanism (s) of gas transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes , 1994 .

[226]  F. Ménil,et al.  A potentially selective methane sensor based on the differential conductivity responses of Pd- and Pt-doped tin oxide thick layers , 1993 .

[227]  John S. Hoffman,et al.  Methane reductions : implications for global warming and atmospheric chemical change , 1992 .

[228]  T. Giallorenzi,et al.  Optical fiber sensor technology , 1982, 1985 International Electron Devices Meeting.

[229]  Q. Xue,et al.  Great enhancement of CH 4 sensitivity of SnO 2 based nanofibers by heterogeneous sensitization and catalytic effect , 2018 .

[230]  B. P. Dhonge,et al.  Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature , 2017 .

[231]  P. Thangadurai,et al.  Structural and gas sensing properties of ex-situ oxidized Sn grown by thermal evaporation , 2016 .

[232]  Brian Yuliarto,et al.  Review—The Development of Gas Sensor Based on Carbon Nanotubes , 2016 .

[233]  Sarika Shukla,et al.  Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study , 2015 .

[234]  G. C. Sarti,et al.  Mixed gas sorption in glassy polymeric membranes: I. CO2/CH4 and n-C4/CH4 mixtures sorption in poly(1-trimethylsilyl-1-propyne) (PTMSP) , 2014 .

[235]  Warwick P. Bowen,et al.  Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines , 2012 .

[236]  Jing Li,et al.  Platinum Electrodeposition on Unsupported Single Wall Carbon Nanotubes and Its Application as Methane Sensing Material. , 2012, Journal of the Electrochemical Society.

[237]  H. Haick,et al.  Effect of humidity on nanoparticle-based chemiresistors: a comparison between synthetic and real-world samples. , 2012, ACS applied materials & interfaces.

[238]  J. Dutasta,et al.  Cryptophanes and their complexes--present and future. , 2009, Chemical reviews.

[239]  O. Wolfbeis,et al.  Fiber-optic chemical sensors and biosensors. , 2008, Analytical chemistry.

[240]  Nathan S. Lewis,et al.  Array-based vapor sensing using chemically sensitive, carbon black-Polymer resistors , 1996 .

[241]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .