The triple argon isotope composition of groundwater on ten-thousand-year timescales

[1]  J. Severinghaus,et al.  Widespread six degrees Celsius cooling on land during the Last Glacial Maximum , 2021, Nature.

[2]  J. Severinghaus,et al.  Deglacial water-table decline in Southern California recorded by noble gas isotopes , 2019, Nature Communications.

[3]  Sean L. Mackay,et al.  Two-million-year-old snapshots of atmospheric gases from Antarctic ice , 2019, Nature.

[4]  J. Severinghaus,et al.  Precise determination of Ar, Kr and Xe isotopic fractionation due to diffusion and dissolution in fresh water , 2019, Earth and Planetary Science Letters.

[5]  W. Jenkins,et al.  A determination of atmospheric helium, neon, argon, krypton, and xenon solubility concentrations in water and seawater , 2019, Marine Chemistry.

[6]  C. Maden,et al.  Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water , 2018, Earth and Planetary Science Letters.

[7]  Michael N. Jung,et al.  A new software tool for the analysis of noble gas data sets from (ground)water , 2018, Environ. Model. Softw..

[8]  T. Gleeson,et al.  The rapid yet uneven turnover of Earth's groundwater , 2017 .

[9]  J. McDonnell,et al.  Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination , 2017 .

[10]  J. Severinghaus,et al.  Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone , 2017 .

[11]  T. Gleeson,et al.  The global volume and distribution of modern groundwater , 2016 .

[12]  P. Mayewski,et al.  Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica , 2015, Proceedings of the National Academy of Sciences.

[13]  A. Suckow The age of groundwater – Definitions, models and why we do not need this term , 2014 .

[14]  W. Danskin,et al.  A Geochemical Approach to Determine Sources and Movement of Saline Groundwater in a Coastal Aquifer , 2014, Ground water.

[15]  D. Livingstone,et al.  Fractionation of Ne and Ar isotopes by molecular diffusion in water , 2014 .

[16]  K. Tempest,et al.  Kinetic isotopic fractionation of argon and neon during air–water gas transfer , 2013 .

[17]  G. Slater,et al.  Deep fracture fluids isolated in the crust since the Precambrian era , 2013, Nature.

[18]  Johanna F. Hoyt,et al.  Detrital zircons indicate no drainage link between southern California rivers and the Colorado Plateau from mid-Cretaceous through Pliocene , 2013 .

[19]  L. Flint,et al.  A basin-scale approach for assessing water resources in a semiarid environment: San Diego region, California and Mexico , 2012 .

[20]  R. Yokochi,et al.  Determination of crustal fluid residence times using nucleogenic 39Ar , 2012 .

[21]  K. Belitz,et al.  Evidence for prolonged El Nino-like conditions in the Pacific during the Late Pleistocene: a 43 ka noble gas record from California groundwaters , 2009 .

[22]  J. Jouzel,et al.  The contemporary degassing rate of 40Ar from the solid Earth , 2008, Proceedings of the National Academy of Sciences.

[23]  G. Sposito,et al.  Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications , 2008 .

[24]  T. Johnson,et al.  Groundwater Age and Groundwater Age Dating , 2008 .

[25]  R. Weiss,et al.  Evidence for crustal degassing of CF4 and SF6 in Mojave Desert groundwaters , 2008 .

[26]  D. Hilton,et al.  Source and movement of helium in the eastern Morongo groundwater Basin: The influence of regional tectonics on crustal and mantle helium fluxes , 2005 .

[27]  B. Susan Rhea,et al.  U.S. Quaternary fault and fold database released , 2004 .

[28]  D. Hilton,et al.  Helium isotope studies in the Mojave Desert, California: implications for groundwater chronology and regional seismicity , 2003 .

[29]  T. Onstott,et al.  Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa , 2003 .

[30]  J. Severinghaus,et al.  Determining the Thermal Diffusion Factor for 40Ar/36Ar in Air To Aid Paleoreconstruction of Abrupt Climate Change , 2003 .

[31]  J. Severinghaus,et al.  A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica , 2003 .

[32]  M. Stute,et al.  A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA) , 2002 .

[33]  B. Keller,et al.  Tectonic setting of the San Diego formation aquifer,considered for conjunctive use storage , 2001 .

[34]  U. Beyerle,et al.  Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air , 2000, Nature.

[35]  U. Beyerle,et al.  A Mass Spectrometric System for the Analysis of Noble Gases and Tritium from Water Samples , 2000 .

[36]  D. Rothstein,et al.  Thermal evolution of Monte Blanco dome: Low‐angle normal faulting during Gulf of California rifting and late Eocene denudation of the eastern Peninsular Ranges , 2000 .

[37]  B. Marty,et al.  Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition , 1999 .

[38]  R. W. Berry Eocene and Oligocene Otay-Type Waxy Bentonites of San Diego County and Baja California: Chemistry, Mineralogy, Petrology and Plate Tectonic Implications , 1999 .

[39]  S. Drenkard,et al.  A tracer study of the Floridan Aquifer in southeastern Georgia: Implications for groundwater flow and paleoclimate , 1997 .

[40]  D. Solomon,et al.  Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater , 1996 .

[41]  W. Broecker,et al.  Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion , 1996 .

[42]  W. Broecker,et al.  Cooling of Tropical Brazil (5�C) During the Last Glacial Maximum , 1995, Science.

[43]  M. Stute,et al.  Helium in deep circulating groundwater in the Great Hungarian Plain: Flow dynamics and crustal and mantle helium fluxes , 1992 .

[44]  P. Sarda,et al.  Mid-ocean ridge popping rocks: implications for degassing at ridge crests , 1990 .

[45]  J. Andrews,et al.  Atmospheric and radiogenic gases in groundwaters from the Stripa granite , 1989 .

[46]  P. Abbott,et al.  Sonora, Mexico, Source for the Eocene Poway Conglomerate of Southern California , 1989 .

[47]  T. Torgersen,et al.  Argon accumulation and the crustal degassing flux of40Ar in the Great Artesian Basin, Australia , 1988 .

[48]  T. Torgersen,et al.  Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia , 1985 .

[49]  H. Loosli A dating method with39Ar , 1983 .

[50]  J. Andrews,et al.  Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends , 1979 .

[51]  E. Mazor Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters; Jordan Rift Valley, Israel , 1972 .

[52]  M. Currell,et al.  A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas , 2020 .

[53]  C. D. Spafford,et al.  Provenance, paleogeography, and paleotectonic implications of the mid-Cenozoic Sespe Formation, coastal southern California, USA , 2018 .

[54]  Laura M. Bexfield,et al.  Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2015, and previously unpublished data from 2013 to 2014 , 2018 .

[55]  Laura M. Bexfield,et al.  Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013 , 2016 .

[56]  H. K. Chang,et al.  Continental degassing of 4He by surficial discharge of deep groundwater , 2015 .

[57]  James E. Wright,et al.  Detrital zircon provenance of the Late Cretaceous–Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and paleogeography , 2015 .

[58]  A. Hunt U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples , 2015 .

[59]  W. Aeschbach–Hertig,et al.  Noble Gas Thermometry in Groundwater Hydrology , 2013 .

[60]  D. Hilton,et al.  Applications of Groundwater Helium , 2012 .

[61]  T. Coplen,et al.  Determination of the δ 2 H and δ 18 O of soil water and water in plant matter; RSIL lab code 1700 , 2012 .

[62]  B. Rosenheim,et al.  A High-Performance 14C Accelerator Mass Spectrometry System , 2010, Radiocarbon.

[63]  Peter M. Martin,et al.  Comparison of groundwater flow in Southern California coastal aquifers , 2009 .

[64]  John R. Garbarino,et al.  Chapter 1. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry , 2006 .

[65]  M. Grove,et al.  Late Cretaceous cooling of the east-central Peninsular Ranges Batholith (33 degrees N); relationship to La Posta Pluton emplacement, Laramide shallow subduction, and forearc sedimentation , 2003 .

[66]  P. Burnard,et al.  Production, Release and Transport of Noble Gases in the Continental Crust , 2002 .

[67]  D. Solomon 4He in Groundwater , 2000 .

[68]  Brian D. Marshall Potassium-calcium decay system , 1999 .

[69]  M. Fishman Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments , 1993 .

[70]  T. Deméré,et al.  Age and Stratigraphy of the Sweetwater and Otay Formations, San Diego County, California , 1991 .

[71]  J. Andrews,et al.  Dissolved gases in the Milk River aquifer, Alberta, Canada , 1991 .

[72]  T. Deméré The Neogene San Diego Basin: A Review of the Marine Pliocene San Diego Formation , 1983 .

[73]  J. Vogel,et al.  “Excess air” in groundwater , 1981 .