An Atomistic-to-Continuum Analysis of Crystal Cleavage in a Two-Dimensional Model Problem

A two-dimensional atomic mass spring system is investigated for critical fracture loads and its crack path geometry. We rigorously prove that, in the discrete-to-continuum limit, the minimal energy of a crystal under uniaxial tension leads to a universal cleavage law and energy minimizers are either homogeneous elastic deformations or configurations that are completely cracked and do not store elastic energy. Beyond critical loading, the specimen generically cleaves along a unique optimal crystallographic hyperplane. For specific symmetric crystal orientations, however, cleavage might fail. In this case a complete characterization of possible limiting crack geometries is obtained.

[1]  Bernd Schmidt,et al.  On the derivation of linear elasticity from atomistic models , 2009, Networks Heterog. Media.

[2]  C. Mora-Corral Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension , 2010 .

[3]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[4]  Rodica Toader,et al.  A Model for the Quasi-Static Growth¶of Brittle Fractures:¶Existence and Approximation Results , 2001 .

[5]  Matteo Negri,et al.  A finite element approximation of the Griffith’s model in fracture mechanics , 2003, Numerische Mathematik.

[6]  M. Negri,et al.  Linearized Elasticity as Γ-Limit of Finite Elasticity , 2002 .

[7]  Andrea Braides,et al.  Surface energies in nonconvex discrete systems , 2007 .

[8]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[9]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[10]  Stefan Müller,et al.  Korn’s second inequality and geometric rigidity with mixed growth conditions , 2012, 1203.1138.

[11]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[12]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[13]  Adriana Garroni,et al.  Variational Formulation of Softening Phenomena in Fracture Mechanics: The One‐Dimensional Case , 1999 .

[14]  G. Friesecke,et al.  Mathematik in den Naturwissenschaften Leipzig A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence , 2005 .

[15]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[16]  G. Friesecke,et al.  A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .

[17]  Andrea Braides,et al.  Limits of Discrete Systems with Long-Range Interactions , 2003 .

[18]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[19]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[20]  Christopher J. Larsen,et al.  Existence and convergence for quasi‐static evolution in brittle fracture , 2003 .

[21]  M. Ortiz,et al.  Effective Cohesive Behavior of Layers of Interatomic Planes , 2006 .

[22]  Fernando Fraternali,et al.  Eigenfracture: An Eigendeformation Approach to Variational Fracture , 2009, Multiscale Model. Simul..

[23]  Bernd Schmidt,et al.  On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime , 2014, Networks Heterog. Media.

[24]  B. Schmidt Linear Γ-limits of multiwell energies in nonlinear elasticity theory , 2008 .

[25]  Paolo Maria Mariano,et al.  A. Braides, Γ–convergence for beginners , 2007 .

[26]  G. Buttazzo Energies on Bv and Variational Models in Fracture Mechanics , 2007 .

[27]  Andrea Braides,et al.  Continuum Limits of Discrete Systems without Convexity Hypotheses , 2002 .

[28]  Andrea Braides,et al.  A derivation of linear elastic energies from pair-interaction atomistic systems , 2007, Networks Heterog. Media.

[29]  NON-LOCAL VARIATIONAL LIMITS OF DISCRETE SYSTEMS , 2000 .

[30]  Matteo Focardi,et al.  Finite difference approximation of energies in Fracture Mechanics , 2000 .