Blind Estimation of Motion Blur Parameters for Image Deconvolution

This paper describes an approach to estimate the parameters of a motion blur (direction and length) directly form the observed image. The motion blur estimate can then be used in a standard non-blind deconvolution algorithm, thus yielding a blind motion deblurring scheme. The estimation criterion is based on recent results about the general spectral behavior of natural images. Experimental results show that the proposed approach is able to accurately estimate both the length and orientation of motion blur kernels, even for small lengths which are traditionally difficult.

[1]  Brendt Wohlberg,et al.  Blind Image Deconvolution Motion Blur Estimation , 2006 .

[2]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[3]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[4]  Alfred S. Carasso,et al.  Direct Blind Deconvolution , 2001, SIAM J. Appl. Math..

[5]  José M. Bioucas-Dias,et al.  Adaptive total variation image deconvolution: A majorization-minimization approach , 2006, 2006 14th European Signal Processing Conference.

[6]  Steven Harrington,et al.  Computer graphics: a programming approach, 2nd ed. , 1987 .

[7]  James E. Vastyan,et al.  Computer graphics: A programming approach , 1983 .

[8]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[9]  Dr. Günter Enderle,et al.  Computer Graphics Programming , 1987, Symbolic Computation.

[10]  Patrick L. Combettes,et al.  Image deconvolution with total variation bounds , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[11]  Nahum Kiryati,et al.  Variational Pairing of Image Segmentation and Blind Restoration , 2004, ECCV.

[12]  M. Jamzad,et al.  Motion blur identification in noisy images using fuzzy sets , 2005, Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005..

[13]  R. Bracewell Two-dimensional imaging , 1994 .

[14]  José M. Bioucas-Dias,et al.  Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[15]  Robert D. Nowak,et al.  A bound optimization approach to wavelet-based image deconvolution , 2005, IEEE International Conference on Image Processing 2005.

[16]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[17]  Deepa Kundur,et al.  Blind image deconvolution revisited , 1996 .

[18]  José M. Bioucas-Dias,et al.  Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors , 2006, IEEE Transactions on Image Processing.