Experimental investigation of nanofluid shear and longitudinal viscosities

Dilute nanoparticle suspensions of alumina in decane and isoparaffinic polyalphaolefin (PAO) exhibit thermal conductivity and shear viscosity that are enhanced compared to continuum models that assume well-dispersed particles. An optical technique has been used to measure the longitudinal viscosity of these suspensions at frequencies from 200to600MHz and evaluate an effective hydrodynamic particle size. The measurements indicate that for the decane-based nanofluids the nanoparticles do not form clusters. In the case of PAO nanofluids, the measurements of longitudinal viscosity and the corresponding values of the particle size are consistent with a picture of nonclustered particles in a weakly shear-thinning viscous oligomeric oil.

[1]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[2]  J. Koh 多孔性金属材料の熱伝導率と電気抵抗率の予知(Int.J.Heat Mass Transfer,16,1973,p2013〜22) , 1974 .

[3]  K. Nelson,et al.  Impulsive stimulated light scattering from glass‐forming liquids. I. Generalized hydrodynamics approach , 1995 .

[4]  K. Nelson,et al.  Thermal conductivity of nanoparticle suspensions in insulating media measured with a transient optical grating and a hotwire , 2008 .

[5]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[6]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[7]  David R. Emerson,et al.  Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition , 2006 .

[8]  A. Fetter,et al.  Theoretical mechanics of particles and continua , 1980 .

[9]  J. Rogers,et al.  Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications , 2000 .

[10]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[11]  M. Povey,et al.  Ultrasound techniques for characterizing colloidal dispersions , 2005 .

[12]  Weitz,et al.  Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy , 2000, Physical review letters.

[13]  J. Dawes,et al.  On the viscoelastic properties of n‐alkane liquids , 1985 .

[14]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[15]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[16]  A. H. Harker,et al.  Velocity and attenuation of ultrasound in suspensions of particles in fluids , 1988 .