A variational principle for the Navier-Stokes equation
暂无分享,去创建一个
[1] V. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .
[2] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[3] J. Gillis,et al. Variational principles in dynamics and quantum theory , 1956 .
[4] T. Dankel. Mechanics on manifolds and the incorporation of spin into Nelson's Stochastic mechanics , 1970 .
[5] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[6] Kiyosi Itô. Stochastic parallel displacement , 1975 .
[7] W. Fleming,et al. Deterministic and Stochastic Optimal Control , 1975 .
[8] J. Oden,et al. Variational Methods in Theoretical Mechanics , 1976 .
[9] Vladimir Igorevich Arnolʹd,et al. Les méthodes mathématiques de la mécanique classique , 1976 .
[10] Atsushi Inoue,et al. On a new derivation of the Navier-Stokes equation , 1979 .
[11] K. Yasue. Stochastic calculus of variations , 1981 .
[12] Stochastic variational derivations of the Navier-Stokes equation , 1981 .
[13] T. Nakagomi. Mesoscopic thermodynamics of nonequilibrium open systems. I. Negentropy consumption and residual entropy , 1981 .
[14] De l'incertitude : positivisme et sociologie , 1982 .