Evidence for Topological Magnon-Phonon Hybridization in a 2D Antiferromagnet down to the Monolayer Limit.

Topological phonons and magnons potentially enable low-loss, quantum coherent, and chiral transport of information and energy at the atomic scale. Van der Waals magnetic materials are promising to realize such states due to their recently discovered strong interactions among the electronic, spin, and lattice degrees of freedom. Here, we report the first observation of coherent hybridization of magnons and phonons in monolayer antiferromagnet FePSe3 by cavity-enhanced magneto-Raman spectroscopy. The robust magnon-phonon cooperativity in the 2D limit occurs even in zero magnetic field, which enables nontrivial band inversion between longitudinal and transverse optical phonons caused by the strong coupling with magnons. The spin and lattice symmetry theoretically guarantee magnetic-field-controlled topological phase transition, verified by nonzero Chern numbers calculated from the coupled spin-lattice model. The 2D topological magnon-phonon hybridization potentially offers a new route toward quantum phononics and magnonics with an ultrasmall footprint.

[1]  D. Mandrus,et al.  Observation of Giant Surface Second-Harmonic Generation Coupled to Nematic Orders in the van der Waals Antiferromagnet FePS3. , 2022, Nano letters.

[2]  F. Peiris,et al.  Cavity-enhanced linear dichroism in a van der Waals antiferromagnet , 2022, Nature Photonics.

[3]  Jun Zhang,et al.  Magneto-Raman Study of Magnon-Phonon Coupling in Two-Dimensional Ising Antiferromagnetic FePS3. , 2022, The journal of physical chemistry letters.

[4]  L. Balents,et al.  Giant modulation of optical nonlinearity by Floquet engineering , 2021, Nature.

[5]  A. Cavalleri,et al.  Engineering crystal structures with light , 2021, Nature Physics.

[6]  Y. Mokrousov,et al.  Topological magnon insulators in two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: Toward intrinsic gap-tunability , 2021, Science advances.

[7]  C. Kane,et al.  Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order , 2021, Nature Nanotechnology.

[8]  D. Smirnov,et al.  Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals , 2020, Nature Materials.

[9]  Qiang Zhu,et al.  Computation and data driven discovery of topological phononic materials , 2020, Nature Communications.

[10]  C. Felser,et al.  The topology of electronic band structures , 2020, Nature Materials.

[11]  J. Rho,et al.  Recent advances in 2D, 3D and higher-order topological photonics , 2020, Light, science & applications.

[12]  Jonghyeon Kim,et al.  Coherent many-body exciton in van der Waals antiferromagnet NiPS3 , 2020, Nature.

[13]  J. Shan,et al.  Exchange magnetostriction in two-dimensional antiferromagnets , 2020, Nature Materials.

[14]  C. Adelmann,et al.  Introduction to spin wave computing , 2020, Journal of Applied Physics.

[15]  Xiaodong Xu,et al.  Direct observation of two-dimensional magnons in atomically thin CrI3 , 2020, 2001.07025.

[16]  Xiaodong Xu,et al.  Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3 , 2019, Nature Nanotechnology.

[17]  S. Stemmer,et al.  A Large Effective Phonon Magnetic Moment in a Dirac Semimetal. , 2019, Nano letters.

[18]  M. Dresselhaus,et al.  Direct Observation of Symmetry-Dependent Electron-Phonon Coupling in Black Phosphorus. , 2019, Journal of the American Chemical Society.

[19]  Yong Xu,et al.  Topological Phononics: From Fundamental Models to Real Materials , 2019, Advanced Functional Materials.

[20]  Yasunobu Nakamura,et al.  Hybrid quantum systems based on magnonics , 2019, Applied Physics Express.

[21]  S. Rezende,et al.  Detecting the phonon spin in magnon–phonon conversion experiments , 2018 .

[22]  Binghai Yan,et al.  Topological antiferromagnetic spintronics , 2018 .

[23]  A. Krasheninnikov,et al.  Vibrational Properties of Metal Phosphorus Trichalcogenides from First-Principles Calculations , 2017 .

[24]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[25]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[26]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[27]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[28]  S. Owerre A first theoretical realization of honeycomb topological magnon insulator , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Xiaoqun Wang,et al.  Giant magneto-optical Raman effect in a layered transition metal compound , 2016, Proceedings of the National Academy of Sciences.

[30]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[31]  Li Shi,et al.  Magnetic field induced helical mode and topological transitions in a quasi-ballistic topological insulator nanoribbon with circumferentially quantized surface state sub-bands , 2015, 1503.00685.

[32]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[33]  G. Ouvrard,et al.  Effects due to spin ordering in layered MPX3 compounds revealed by inelastic light scattering , 1987 .

[34]  G. L. Flem,et al.  Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se) , 1982 .

[35]  A. Wiedenmann,et al.  Neutron diffraction study of the layered compounds MnPSe3 and FePSe3 , 1981 .