Computing the Greedy Spanner in Near-Quadratic Time
暂无分享,去创建一个
Michiel H. M. Smid | Prosenjit Bose | Paz Carmi | Anil Maheshwari | Mohammad Farshi | M. Smid | P. Bose | A. Maheshwari | Paz Carmi | M. Farshi
[1] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[2] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[3] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[4] Sariel Har-Peled,et al. Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.
[5] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[6] Joachim Gudmundsson,et al. Dilation and Detours in Geometric Networks , 2007, Handbook of Approximation Algorithms and Metaheuristics.
[7] Paul Chew,et al. There is a planar graph almost as good as the complete graph , 1986, SCG '86.
[8] Barun Chandra. Constructing Sparse Spanners for Most Graphs in Higher Dimensions , 1994, Inf. Process. Lett..
[9] Michiel Smid,et al. Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.
[10] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.
[11] José Soares,et al. Approximating Euclidean distances by small degree graphs , 1994, Discret. Comput. Geom..
[12] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[13] Joachim Gudmundsson,et al. Experimental study of geometric t-spanners , 2005, JEAL.
[14] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[15] Joachim Gudmundsson,et al. Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.
[16] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[17] Alejandro A. Schäffer,et al. Graph spanners , 1989, J. Graph Theory.
[18] Joachim Gudmundsson,et al. Experimental Study of Geometric t-Spanners: A Running Time Comparison , 2007, WEA.
[19] Kunal Talwar,et al. Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.
[20] Leonidas J. Guibas,et al. Exploring Protein Folding Trajectories Using Geometric Spanners , 2004, Pacific Symposium on Biocomputing.
[21] David Peleg,et al. Distributed Computing: A Locality-Sensitive Approach , 1987 .
[22] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[23] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[24] Giri Narasimhan,et al. New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..
[25] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..