Computing the Greedy Spanner in Near-Quadratic Time

AbstractThe greedy algorithm produces high-quality spanners and, therefore, is used in several applications. However, even for points in d-dimensional Euclidean space, the greedy algorithm has near-cubic running time. In this paper, we present an algorithm that computes the greedy spanner for a set of n points in a metric space with bounded doubling dimension in $\ensuremath {\mathcal {O}}(n^{2}\log n)$ time. Since computing the greedy spanner has an Ω(n2) lower bound, the time complexity of our algorithm is optimal within a logarithmic factor.

[1]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[4]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[5]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[6]  Joachim Gudmundsson,et al.  Dilation and Detours in Geometric Networks , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[7]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[8]  Barun Chandra Constructing Sparse Spanners for Most Graphs in Higher Dimensions , 1994, Inf. Process. Lett..

[9]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[10]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[11]  José Soares,et al.  Approximating Euclidean distances by small degree graphs , 1994, Discret. Comput. Geom..

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  Joachim Gudmundsson,et al.  Experimental study of geometric t-spanners , 2005, JEAL.

[14]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[15]  Joachim Gudmundsson,et al.  Improved Greedy Algorithms for Constructing Sparse Geometric Spanners , 2000, SWAT.

[16]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[17]  Alejandro A. Schäffer,et al.  Graph spanners , 1989, J. Graph Theory.

[18]  Joachim Gudmundsson,et al.  Experimental Study of Geometric t-Spanners: A Running Time Comparison , 2007, WEA.

[19]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[20]  Leonidas J. Guibas,et al.  Exploring Protein Folding Trajectories Using Geometric Spanners , 2004, Pacific Symposium on Biocomputing.

[21]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[22]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[23]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[24]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..

[25]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..