Treewidth computation and extremal combinatorics

For a given graph Gand integers b,f≥ 0, let Sbe a subset of vertices of Gofsize b+ 1 such that the subgraph of Ginduced bySis connected and Scan be separated from othervertices of Gby removing fvertices. We provethat every graph on nvertices contains at most$n\binom{b+f}{b}$ such vertex subsets. This result from extremalcombinatorics appears to be very useful in the design of severalenumeration and exact algorithms. In particular, we use it toprovide algorithms that for a given n-vertex graphG compute the treewidth of Gin time$\mathcal{O}(1.7549^n)$ by making use of exponential space and intime $\mathcal{O}(2.6151^n)$ and polynomial space; decide in time $\mathcal{O}(({\frac{2n+k+1}{3})^{k+1}\cdotkn^6})$ if the treewidth of Gis at most k; list all minimal separators of Gin time$\mathcal{O}(1.6181^n)$ and all potential maximal cliques ofGin time $\mathcal{O}(1.7549^n)$. This significantly improves previous algorithms for theseproblems.

[1]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[2]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[3]  Fedor V. Fomin,et al.  Treewidth computation and extremal combinatorics , 2012 .

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[6]  Stasys Jukna Extremal Combinatorics: with Applications in Computer Science by Stasys Jukna, Springer, 2001, xvii + 375 pp. 32.50; $49.95, ISBN 3540663134 , 2003 .

[7]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[9]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[10]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[11]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[12]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[13]  Dimitrios M. Thilikos,et al.  On exact algorithms for treewidth , 2006, TALG.

[14]  W. Marsden I and J , 2012 .

[15]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[16]  B. Bollobás On generalized graphs , 1965 .

[17]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[18]  Yngve Villanger,et al.  Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.

[19]  Richard C. T. Lee,et al.  Counting Clique Trees and Computing Perfect Elimination Schemes in Parallel , 1989, Inf. Process. Lett..

[20]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[21]  Steven S. Seiden Theoretical computer science cheat sheet , 1996, SIGA.

[22]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[23]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[24]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[25]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[26]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[27]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[28]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[29]  Kazuo Iwama,et al.  Worst-Case Upper Bounds for kSAT (Column: Algorithmics) , 2004, Bull. EATCS.

[30]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[31]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[32]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[33]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[34]  Daniel Lokshtanov On the complexity of computing treelength , 2010, Discret. Appl. Math..

[35]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[36]  Fedor V. Fomin,et al.  Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .

[37]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[38]  Cyril Gavoille,et al.  Tree-decompositions with bags of small diameter , 2007, Discret. Math..

[39]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[40]  Ioan Todinca,et al.  Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..