The Value-Passing Calculus

A value-passing calculus is a process calculus in which the contents of communications are values chosen from some data domain, and the propositions appearing in the conditionals are formulas constructed from a logic. Previous studies treat the domain models, as well as the logic theories, as unspecified oracles. The open-ended approach leaves open some fundamental issues unanswered. The paper provides a more formal account of the value-passing calculi. The new treatment is self-contained in that the logic theory a value-passing calculus refers to is formally defined. A value-passing calculus consists of a complete first order theory with an operational model that makes use of the terms and the boolean expressions of the theory. A systematic investigation into the theory of the value-passing calculi is carried out. A particular value-passing calculus, $\mathbb{VPC}$, is shown to be the least expressive among all Turing complete value-passing calculi.

[1]  Davide Sangiorgi,et al.  Algebraic Theories for Name-Passing Calculi , 1993, Inf. Comput..

[2]  Yuxi Fu,et al.  The Name-Passing Calculus , 2015, ArXiv.

[3]  Jean-Pierre Jouannaud,et al.  TAPSOFT'93: Theory and Practice of Software Development , 1993, Lecture Notes in Computer Science.

[4]  C. A. R. Hoare,et al.  A Model for Communicating Sequential Processes , 1980, On the Construction of Programs.

[5]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[6]  Frank Thilly,et al.  The Theory of Interaction , 1901 .

[7]  N. Cutland Computability: An Introduction to Recursive Function Theory , 1980 .

[8]  Julian Rathke Unique fixpoint induction for value-passing processes , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[9]  Elsevier Open Archive A Calculus of Mobile Processes, I , 2015 .

[10]  Yuxi Fu,et al.  Nondeterministic Structure of Computation , 2013 .

[11]  Julian Rathke,et al.  Unique fixpoint induction for message-passing process calculi , 2001, Sci. Comput. Program..

[12]  Holger Hermanns,et al.  Axiomatising Divergence , 2002, ICALP.

[13]  Huimin Lin,et al.  Symbolic Transition Graph with Assignment , 1996, CONCUR.

[14]  Davide Sangiorgi,et al.  From -calculus to Higher-order -calculus | and Back , 2007 .

[15]  Matthew Hennessy,et al.  Proof systems for message-passing process algebras , 2005, Formal Aspects of Computing.

[16]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[17]  Matthew Hennessy,et al.  A proof system for communicating processes with value-passing , 1991, Formal Aspects of Computing.

[18]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[19]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and asynchronous $pi$-calculi , 2003, Mathematical Structures in Computer Science.

[20]  Davide Sangiorgi,et al.  From pi-Calculus to Higher-Order pi-Calculus - and Back , 1993, TAPSOFT.

[21]  Derek C. Oppen,et al.  A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..

[22]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[23]  Rocco De Nicola,et al.  Back and Forth Bisimulations , 1990, CONCUR.

[24]  Julian Bradfield CONCUR '96: Concurrency Theory , 1996 .

[25]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[26]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[27]  Anna Ingólfsdóttir,et al.  A Symbolic Approach to Value-Passing Processes , 2001, Handbook of Process Algebra.

[28]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[29]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[30]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[31]  Rob J. van Glabbeek,et al.  Branching Time and Abstraction in Bisimulation Semantics (Extended Abstract) , 1989, IFIP Congress.

[32]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[33]  C. A. R. Hoare,et al.  Notes on Communicating Sequential Systems , 1986 .

[34]  Andrew William Roscoe,et al.  The Theory and Practice of Concurrency , 1997 .

[35]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.

[36]  Anna Ingólfsdóttir,et al.  A Theory of Communicating Processes with Value Passing , 1993, Inf. Comput..

[37]  Huimin Lin "On-the-fly Instantiation" of Value-passing Processes , 1998, FORTE.

[38]  Huimin Lin,et al.  A Verification Tool for Value-Passing Processes , 1993, PSTV.

[39]  Bent Thomsen,et al.  A calculus of higher order communicating systems , 1989, POPL '89.

[40]  Julian Rathke,et al.  Symbolic techniques for value-passing calculi , 1997 .

[41]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[42]  Anna Ingólfsdóttir,et al.  Communicating processes with value-passing and assignments , 1993, Formal Aspects of Computing.

[43]  Yuxi Fu,et al.  On the expressiveness of interaction , 2010, Theor. Comput. Sci..

[44]  Robin Milner,et al.  A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors , 1989, Inf. Comput..

[45]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[46]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[47]  Bent Thomsen A Theory of Higher Order Communicating Systems , 1995, Inf. Comput..

[48]  Bent Thomsen,et al.  Plain CHOCS A second generation calculus for higher order processes , 2005, Acta Informatica.

[49]  Huimin Lin,et al.  Extended symbolic transition graphs with assignment , 2005, 29th Annual International Computer Software and Applications Conference (COMPSAC'05).