LIRE: open source image retrieval in Java

Content based image retrieval has been around for some time. There are lots of different test data sets, lots of published methods and techniques, and manifold retrieval challenges, where content based image retrieval is of interest. LIRE is a Java library, that provides a simple way to index and retrieve millions of images based on the images' contents. LIRE is robust and well tested and is not only recommended by the websites of ImageCLEF and MediaEval, but is also employed in industry. This paper gives an overview on LIRE, its use, capabilities and reports on retrieval and runtime performance.

[1]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[2]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  GeversTheo,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010 .

[4]  Yiannis S. Boutalis,et al.  FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[5]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[6]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[7]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Mike Thelwall,et al.  Synthesis Lectures on Information Concepts, Retrieval, and Services , 2009 .

[9]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[10]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[12]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[13]  Jonathon S. Hare,et al.  OpenIMAJ and ImageTerrier: Java libraries and tools for scalable multimedia analysis and indexing of images , 2011, MM '11.

[14]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[16]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[18]  Yiannis S. Boutalis,et al.  Selection of the proper Compact Composite Descriptor for improving content based image retrieval , 2009 .

[19]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Stefan M. Rüger Multimedia information retrieval , 2010, SIGIR '10.

[21]  Otis Gospodnetic,et al.  Lucene in Action , 2004 .

[22]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Mathias Lux,et al.  Visual information retrieval using Java and LIRE , 2013, SIGIR '12.

[24]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.