Chapter 2 - Erbium-Doped Fiber Amplifiers for Optical Communications

[1]  S. Grubb,et al.  dBm output power Er/Yb codoped optical amplifier pumped by diode-pumped Nd:YLE laser , 1992 .

[2]  Leonard J. Cimini,et al.  Optimized performance of erbium-doped fiber amplifiers in subcarrier multiplexed lightwave AM-VSB CATV systems , 1991 .

[3]  K. Dybdal,et al.  Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering , 1992, IEEE Photonics Technology Letters.

[4]  H. Tam Simple fusion splicing technique for reducing splicing loss between standard singlemode fibres and erbium-doped fibre , 1991 .

[5]  S. Grubb,et al.  High-Power Erbium Optical Amplifiers , 1993 .

[6]  J. Gordon,et al.  Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission , 1991 .

[7]  Y. Tachikawa,et al.  Noise characteristics of Er/sup 3+/-doped fiber amplifiers pumped by 0.98 and 1.48 mu m laser diodes , 1990, IEEE Photonics Technology Letters.

[8]  David J. DiGiovanni Fabrication of rare-earth-doped optical fiber , 1991, Other Conferences.

[9]  Shigeyuki Akiba,et al.  9000 km, 5 Gb/s NRZ Transmission Experiment Using 274 Erbium-Doped Fiber-Amplifiers , 1992 .

[10]  E. Desurvire,et al.  Spectral gain hole-burning at 1.53 mu m in erbium-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[11]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[12]  M. Nishimura,et al.  Erbium-doped fiber amplifier pumped at 1.48 mu m with extremely high efficiency , 1991, IEEE Photonics Technology Letters.

[13]  D. G. Duff,et al.  Measurements and simulation of multipath interference for 1.7-Gb/s lightwave transmission systems using single- and multifrequency lasers , 1990 .

[14]  J. C. Livas HIGH SENSITIVITY OPTICALLY PREAMPLIFIED 10 Gb/s RECEIVERS , 1996 .

[15]  M.G. Taylor Observation of new polarization dependence effect in long haul optically amplified system , 1993, IEEE Photonics Technology Letters.

[16]  M. Horiguchi,et al.  Concentration effect on optical amplification characteristics of Er-doped silica single-mode fibers , 1990, IEEE Photonics Technology Letters.

[17]  Richard E. Wagner,et al.  MONET: multiwavelength optical networking , 1996 .

[18]  John Lehrer Zyskind,et al.  Advances in Erbium-doped fiber amplifiers for optical communications , 1991, Other Conferences.

[19]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[20]  A.A.M. Saleh,et al.  Modeling of gain in erbium-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[21]  Jay R. Simpson,et al.  Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda =1.53 mu m , 1989 .

[22]  A. K. Srivastava,et al.  Fast Gain Control in an Erbium-Doped Fiber Amplifier , 1996 .

[23]  David N. Payne,et al.  Efficient pump wavelengths of erbium-doped fibre optical amplifier , 1989 .

[24]  Jay R. Simpson,et al.  2-Gbit/s signal amplification at lambda =1.53 mu m in an erbium-doped single-mode fiber amplifier , 1989 .

[25]  Yi Sun,et al.  Fast Power Transients in Optically Amplified Multiwavelength Optical Networks , 1996 .

[26]  Adel A. M. Saleh Overview of the MONET, Multiwavelength Optical Networking, program , 1996, Optical Fiber Communications, OFC..

[27]  M. Zirngibl Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop , 1991 .

[28]  J. Zyskind,et al.  Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO/sub 2/:SiO/sub 2/ core , 1990, IEEE Photonics Technology Letters.

[29]  V. J. Mazurczyk,et al.  Polarization dependent gain in erbium doped-fiber amplifiers , 1994 .

[30]  Stuart M. Abbott,et al.  Design requirements for the current generation of undersea cable systems , 1995, AT&T Technical Journal.

[31]  Jay R. Simpson Fabrication Of Rare-Earth Doped Glass Fibers , 1990, Other Conferences.

[32]  E. Desurvire,et al.  Dynamic gain compensation in saturated erbium-doped fiber amplifiers , 1991, IEEE Photonics Technology Letters.

[33]  E. Bergmann,et al.  Erbium-doped fiber amplifier second-order distortion in analog links and electronic compensation , 1991, IEEE Photonics Technology Letters.

[34]  Y. Miyajima,et al.  Optical amplification in Er/sup 3+/-doped single-mode fluoride fiber , 1990, IEEE Photonics Technology Letters.

[35]  Fiber-Amplifier Repeater Design For Undersea System Application , 1993 .

[36]  M. Okayasu,et al.  Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11.0 dB/mW , 1990 .

[37]  C. R. Giles,et al.  Transient gain and cross talk in erbium-doped fiber amplifiers. , 1989, Optics letters.

[38]  Yong-Kwan Park,et al.  A Field Demonstration of 10 Gb/s - 360km Transmission Through Embedded Standard (non-DSF) Fiber Cables , 1994 .

[39]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[40]  C. R. Giles,et al.  Efficient erbium-doped fiber amplifier at a 1.53-microm wavelength with a high output saturation power. , 1989, Optics letters.

[41]  Andrew Lord,et al.  Assessment of the polarisation loss dependence of transoceanic systems using a recirculating loop , 1993 .

[42]  Jay R. Simpson,et al.  Simple theory of gain peaking in erbium-doped amplifier chains for long-haul communications , 1994, Other Conferences.

[43]  A.R. Chraplyvy,et al.  End-to-end equalization experiments in amplified WDM lightwave systems , 1993, IEEE Photonics Technology Letters.

[44]  J.R. Simpson,et al.  Prediction of gain peak wavelength for Er-doped fiber amplifiers and amplifier chains , 1994, IEEE Photonics Technology Letters.

[45]  Steven K. Korotky,et al.  2.488-Gb/s Unrepeatered Transmission over 529 km using Remotely Pumped Post- and Pre-Amplifiers, Forward Error Correction, and Dispersion Compensation , 1995 .

[46]  J.-M.P. Delavaux,et al.  Multi-stage erbium-doped fiber amplifier designs , 1995 .

[47]  N. S. Bergano,et al.  10 Gbit/s WDM transmission measurements on an installed optical amplifier undersea cable system , 1995 .

[48]  Sherman Karp,et al.  Optical Communications , 1976 .

[49]  John E. Sipe,et al.  Long-period fiber gratings as band-rejection filters , 1995 .

[50]  N. S. Bergano,et al.  A 9000 km 5 Gb/s and 21,000 km 2.4 Gb/s Feasibility Demonstration of Transoceanic EDFA Systems Using a Circulating Loop , 1991 .

[51]  R.W. Tkach,et al.  Fast-link control protection of surviving channels in multiwavelength optical networks , 1997, IEEE Photonics Technology Letters.

[52]  John Lehrer Zyskind,et al.  Room temperature spectral hole-burning in erbium-doped fiber amplifiers , 1996, Optical Fiber Communications, OFC..

[53]  J. Zyskind,et al.  An 80 nm ultra wide band EDFA with low noise figure and high output power , 1997 .

[54]  D. Vassilovski,et al.  Quantum capture and escape in quantum-well lasers-implications on direct modulation bandwidth limitations , 1992, IEEE Photonics Technology Letters.

[55]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[56]  Koji Kikushima,et al.  Influence of reflected light on erbium-doped fiber amplifiers for optical AM video signal transmission systems , 1992 .