Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction

The cerebellum can be viewed as supporting two distinct aspects of motor execution related to a) motor coordination and the sequence that imparts such movement temporal coherence and b) the reorganization of ongoing movement when a motor execution error occurs. The former has been referred to as "motor time binding" as it requires that the large numbers of motoneurons involved be precisely activated from a temporal perspective. By contrast, motor error correction requires the abrupt reorganization of ongoing motor sequences, on occasion sufficiently important to rescue the animal or person from potentially lethal situations. The olivo-cerebellar system plays an important role in both categories of motor control. In particular, the morphology and electrophysiology of inferior olivary neurons have been selected by evolution to execute a rather unique oscillatory pace-making function, one required for temporal sequencing and a unique oscillatory phase resetting dynamic for error correction. Thus, inferior olivary (IO) neurons are electrically coupled through gap junctions, generating synchronous subthreshold oscillations of their membrane potential at a frequency of 1-10 Hz and are capable of fast and reliable phase resetting. Here I propose to address the role of the olivocerebellar system in the context of motor timing and reset.

[1]  R. Snider Neurobiology of cerebellar evolution and development , 1971 .

[2]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[3]  E. J. Lang,et al.  Organization of Olivocerebellar Activity in the Absence of Excitatory Glutamatergic Input , 2001, The Journal of Neuroscience.

[4]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[5]  John H Freeman,et al.  Developmental changes in evoked Purkinje cell complex spike responses. , 2003, Journal of neurophysiology.

[6]  K. Doya,et al.  Chaos may enhance information transmission in the inferior olive. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[8]  R. Llinás,et al.  Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex , 1996, The Journal of Neuroscience.

[9]  D. Armstrong,et al.  A quantitative study of the purkinje cells in the cerebellum of the albino rat , 1970, The Journal of comparative neurology.

[10]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[11]  R. Llinás,et al.  In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns , 2007, Proceedings of the National Academy of Sciences.

[12]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[13]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[14]  R. Llinás,et al.  Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. , 1993, The Journal of physiology.

[15]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[16]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[17]  J. Voogd,et al.  Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry , 1989, The Journal of comparative neurology.

[18]  V B Kazantsev,et al.  Olivo-cerebellar cluster-based universal control system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[20]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[21]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[22]  M. Ito,et al.  The origin of cerebellar-induced inhibition of Deiters neurones I. Monosynaptic initiation of the inhibitory postsynaptic potentials , 2004, Experimental Brain Research.

[23]  A. Barto,et al.  Models of the cerebellum and motor learning , 1996 .

[24]  M. Bennett,et al.  Electrical synapses, a personal perspective (or history) , 2000, Brain Research Reviews.

[25]  Michael Ariel,et al.  Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. , 2009, Journal of neurophysiology.

[26]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[27]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[28]  Kris M. Horn,et al.  Discharge of inferior olive cells during reaching errors and perturbations , 2004, Brain Research.

[29]  A.M. Annaswamy,et al.  Synchronization of Animal-Inspired Multiple High-Lift Fins in an Underwater Vehicle Using Olivo–Cerebellar Dynamics , 2008, IEEE Journal of Oceanic Engineering.

[30]  R. Llinás,et al.  An electrophysiological study of the in vitro, perfused brain stem‐cerebellum of adult guinea‐pig. , 1988, The Journal of physiology.

[31]  R. Llinás,et al.  Role of gap junctions in synchronized neuronal oscillations in the inferior olive. , 2005, Journal of neurophysiology.

[32]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[33]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[34]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[35]  B. Hu,et al.  Functional architecture and spike timing properties of corticofugal projections from rat ventral temporal cortex. , 2008, Journal of neurophysiology.

[36]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.

[37]  R. Llinás,et al.  Inferior olive: its role in motor learing , 1975, Science.

[38]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[39]  M. Mauk,et al.  Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses , 2002, Nature.

[40]  H. Bielka,et al.  [The functional organization of the cell]. , 1969, Deutsche Stomatologie.

[41]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[42]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[43]  E. J. Lang,et al.  GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. , 2002, Journal of neurophysiology.

[44]  T. Ebner,et al.  Use of voltage-sensitive dyes and optical recordings in the central nervous system , 1995, Progress in Neurobiology.

[45]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[46]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[47]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[48]  Y Yarom,et al.  The Olivocerebellar System as a Generator of Temporal Patterns , 2002, Annals of the New York Academy of Sciences.

[49]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[51]  Ilan Lampl,et al.  Rhythmic Episodes of Subthreshold Membrane Potential Oscillations in the Rat Inferior Olive Nuclei In Vivo , 2007, The Journal of Neuroscience.

[52]  P Strata,et al.  Functional aspects of the inferior olive. , 1982, Archives italiennes de biologie.

[53]  R. Llinás,et al.  The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study , 2001, The European journal of neuroscience.

[54]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[55]  W. Crill Unitary multiple-spiked responses in cat inferior olive nucleus. , 1970, Journal of neurophysiology.

[56]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[57]  R. Llinás,et al.  Eighteenth Bowditch lecture. Motor aspects of cerebellar control. , 1974, The Physiologist.

[58]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[59]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[60]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[61]  T. Tsumoto,et al.  Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Michael Ariel,et al.  Latencies of climbing fiber inputs to turtle cerebellar cortex. , 2005, Journal of neurophysiology.