Asymptotic variance of random digital search trees

Asymptotics of the variances of many cost measures in random digital search trees are often notoriously messy and involved to obtain. A new approach is proposed to facilitate such an analysis for several shape parameters on random symmetric digital search trees. Our approach starts from a more careful normalization at the level of Poisson generating functions, which then provides an asymptotically equivalent approximation to the variance in question. Several new ingredients are also introduced such as a combined use of Laplace and Mellin transforms and a simple, mechanical technique for justifying the analytic de-Poissonization procedures involved. The methodology we develop can be easily adapted to many other problems with an underlying binomial distribution. In particular, the less expected and somewhat surprising n.log n/2-variance for certain notions of total path-length is also clarified.

[1]  Hsien-Kuei Hwang,et al.  LIMIT THEOREMS FOR THE NUMBER OF MAXIMA IN RANDOM SAMPLES FROM PLANAR REGIONS , 2001 .

[2]  Helmut Prodinger,et al.  Further Results on Digital Search Trees , 1988, Theor. Comput. Sci..

[3]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[4]  D. Aldous,et al.  A diffusion limit for a class of randomly-growing binary trees , 1988 .

[5]  Philippe Flajolet,et al.  Digital Search Trees Revisited , 1986, SIAM J. Comput..

[6]  Werner Schachinger,et al.  On the Variance of a Class of Inductive Valuations of Data Structures for Digital Search , 1995, Theor. Comput. Sci..

[7]  Philippe Jacquet,et al.  Asymptotic Behavior of the Lempel-Ziv Parsing Scheme and Digital Search Trees , 1995, Theor. Comput. Sci..

[8]  Wojciech Szpankowski,et al.  The Evaluation of an Alternative Sum With Applications to the Analysis of Some Data Structures , 1988, Inf. Process. Lett..

[9]  Guy Louchard,et al.  Average Profile of the Generalized Digital Search Tree and the Generalized Lempel-Ziv Algorithm , 1999, SIAM J. Comput..

[10]  Florian Dennert,et al.  Renewals for exponentially increasing lifetimes, with an application to digital search trees. , 2007, 0704.0398.

[11]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[12]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[13]  Helmut Prodinger,et al.  A multivariate view of random bucket digital search trees , 2002, J. Algorithms.

[14]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .

[15]  Philippe Flajolet,et al.  The Complexity of Generating an Exponentially Distributed Variate , 1986, J. Algorithms.

[16]  Mireille Régnier,et al.  Normal Limiting Distribution of the Size of Tries , 1987, Performance.

[17]  Helmut Prodinger External Internal Nodes in Digital Search Trees via Mellin Transforms , 1992, SIAM J. Comput..

[18]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[19]  H. Prodinger,et al.  ON SOME APPLICATIONS OF FORMULAE OF RAMANUJAN IN THE ANALYSIS OF ALGORITHMS , 1991 .

[20]  Helmut Prodinger,et al.  Digital Search Trees Again Revisited: The Internal Path Length Perspective , 1994, SIAM J. Comput..

[21]  Alan G. Konheim,et al.  A note on growing binary trees , 1973, Discret. Math..

[22]  Philippe Flajolet,et al.  Generalized Digital Trees and Their Difference-Differential Equations , 1992, Random Struct. Algorithms.

[23]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[24]  Werner Schachinger,et al.  Asymptotic normality of recursive algorithms via martingale difference arrays , 2001, Discret. Math. Theor. Comput. Sci..

[25]  Hsien-Kuei Hwang,et al.  Analysis in distribution of two randomized algorithms for finding the maximum in a broadcast communication model , 2003, J. Algorithms.

[26]  Ludger Rüschendorf,et al.  Survey of Multivariate Aspects of the Contraction Method , 2006, Discret. Math. Theor. Comput. Sci..

[27]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[28]  Philippe Flajolet,et al.  Singularity Analysis and Asymptotics of Bernoulli Sums , 1999, Theor. Comput. Sci..

[29]  Micha Hofri,et al.  On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel , 1986 .

[30]  Wojciech Szpankowski A Characterization of Digital Search Trees from the Successful Search Viewpoint , 1991, Theor. Comput. Sci..

[31]  Helmut Prodinger Hypothetical Analyses: Approximate Counting in the Style of Knuth, Path Length in the Style of Flajolet , 1992, Theor. Comput. Sci..

[32]  B. Berndt Ramanujan's Notebooks , 1985 .

[33]  Ralph Neininger,et al.  On a multivariate contraction method for random recursive structures with applications to Quicksort , 2001, Random Struct. Algorithms.

[34]  F. Olver Asymptotics and Special Functions , 1974 .

[35]  Michael Drmota,et al.  The variance of the height of digital search trees , 2002, Acta Informatica.

[36]  Philippe Jacquet,et al.  Analysis of a stack algorithm for CSMA-CD random length packet communication , 1990, IEEE Trans. Inf. Theory.

[37]  Bradley Rm,et al.  Directed aggregation on the Bethe lattice: Scaling, mappings, and universality. , 1985 .

[38]  Guy Louchard,et al.  Average profile and limiting distribution for a phrase size in the Lempel-Ziv parsing algorithm , 1995, IEEE Trans. Inf. Theory.

[39]  Wojciech Szpankowski,et al.  Height in a digital search tree and the longest phrase of the Lempel-Ziv scheme , 2000, SODA '00.

[40]  Friedrich Hubalek,et al.  On the variance of the internal path length of generalized digital trees - The Mellin convolution approach , 2000, Theor. Comput. Sci..

[41]  Hsien-Kuei Hwang,et al.  An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms , 2002, J. Algorithms.

[42]  B. Pittel Paths in a random digital tree: limiting distributions , 1986, Advances in Applied Probability.

[43]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[44]  Anders Hald,et al.  On the history of series expansions of frequency functions and sampling distributions, 1873-1944 , 2002 .

[45]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[46]  Hsien-Kuei Hwang,et al.  Phase changes in random point quadtrees , 2007, TALG.

[47]  Edward G. Coffman,et al.  File structures using hashing functions , 1970, CACM.

[48]  B. Berndt Ramanujan’s Notebooks: Part V , 1997 .

[49]  Guy Louchard Exact and Asymptotic Distributions in Digital and Binary Search Trees , 1987, RAIRO Theor. Informatics Appl..

[50]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[51]  S. Janson,et al.  The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance , 2006, math/0702415.

[52]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[53]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..

[54]  Philippe Jacquet,et al.  Average Profile of the Lempel-Ziv Parsing Scheme for a Markovian Source , 2001, Algorithmica.

[55]  S. Janson Rounding of continuous random variables and oscillatory asymptotics , 2005, math/0509009.

[56]  L. Devroye A Study of Trie-Like Structures Under the Density Model , 1992 .

[57]  Helmut Prodinger,et al.  On the shape of the fringe of various types of random trees , 2009 .

[58]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[59]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[60]  David S. Dean,et al.  Phase Transition in a Generalized Eden Growth Model on a Tree , 2006 .

[61]  Bradley,et al.  Directed aggregation on the Bethe lattice: Scaling, mappings, and universality. , 1985, Physical review. B, Condensed matter.

[62]  J. Schiff Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[63]  Michael Drmota,et al.  (Un)expected behavior of digital search tree profile , 2009, SODA.