Probabilistic Satisfiability

Given an arbitrary boolean expression, satisfiability (SAT) refers to the task of finding a truth assignment to the boolean variables that makes the expression true. For example, the boolean expression a & b is true if and only if the boolean variables a and b are true. Satisfiability is of interest to the logic, operations research, and computational complexity communities. Due to the emphasis of the logic community, satisfiability algorithms tend to be sound and complete. However, a current trend is to relax some of these requirements. For example, recent work on satisfiability examines incomplete algorithms (Spears, 1990; Young and Reel, 1990; Mitchell, 1992; Gu, 1992). These algorithms are sound in that, if they discover satisfying assignments, these assignments are correct. However, if a satisfying assignment does not exist, the algorithm will never prove this. Furthermore, there is no guarantee that the algorithm will find a satisfying assignment if one exists (i.e., incompleteness). Despite these obvious drawbacks, such algorithms are advantageous for certain classes of problems (Mitchell, 1992).

[1]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[2]  Henry Wilbraham,et al.  LXXIV. On the theory of chances developed in Professor Boole's “laws of thought” , 2022 .

[3]  G. B. Guccia Rendiconti del circolo matematico di Palermo , 1906 .

[4]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[5]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[6]  L. M. M.-T. Theory of Probability , 1929, Nature.

[7]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[8]  G. Choquet Theory of capacities , 1954 .

[9]  G. Dantzig ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .

[10]  T. Hailperin,et al.  Best Possible Inequalities for the Probability of a Logical Function of Events , 1965 .

[11]  E. W. Adams,et al.  Probability and the Logic of Conditionals , 1966 .

[12]  S. Zionts,et al.  Programming with linear fractional functionals , 1968 .

[13]  G. Schay An algebra of conditional events , 1968 .

[14]  P. Suppes Probabilistic Inference and the Concept of Total Evidence , 1969 .

[15]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[16]  R. Cox,et al.  Journal of the Royal Statistical Society B , 1972 .

[17]  Ernest W. Adams,et al.  The logic of ‘Almost all’ , 1974, J. Philos. Log..

[18]  Edward J. McCluskey,et al.  Probabilistic Treatment of General Combinational Networks , 1975, IEEE Transactions on Computers.

[19]  Stratis Kounias,et al.  Best Linear Bonferroni Bounds , 1976 .

[20]  D. Lewis Probabilities of Conditionals and Conditional Probabilities , 1976 .

[21]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[22]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[23]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[24]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[25]  Roy E. Marsten,et al.  The Design of the XMP Linear Programming Library , 1981, TOMS.

[26]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[27]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[28]  Eitan Zemel,et al.  Polynomial algorithms for estimating network reliability , 1982, Networks.

[29]  J. Ross Quinlan,et al.  Inferno: A Cautious Approach To Uncertain Inference , 1986, Comput. J..

[30]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[31]  Peter C. Cheeseman,et al.  A Method of Computing Generalized Bayesian Probability Values for Expert Systems , 1983, IJCAI.

[32]  F. Barahona The max-cut problem on graphs not contractible to K5 , 1983 .

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[35]  Theodore Hailperin,et al.  Probability logic , 1984, Notre Dame J. Formal Log..

[36]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[37]  Lotfi A. Zadeh,et al.  Is Probability Theory Sufficient for Dealing with Uncertainty in AI: A Negative View , 1985, UAI.

[38]  Judea Pearl,et al.  How to Do with Probabilities What People Say You Can't , 1985, Conference on Artificial Intelligence Applications.

[39]  Oskar Dressler Assumption-Based Truth Maintenance , 1986, Begründungsverwaltung.

[40]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[41]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[42]  Ernest W. Adams,et al.  On the logic of high probability , 1986, Journal of Philosophical Logic.

[43]  J. Yael Assous First-and second-order bounds on terminal reliability , 1986, Networks.

[44]  Mary McLeish,et al.  Probabilistic Logic: Some Comments and Possible use for Nonmonotonic Reasoning , 1988, UAI 1988.

[45]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[46]  M. Minoux,et al.  Extension de la programmation linéaire généralisée au cas des programmes mixtes , 1987 .

[47]  Didier Dubois,et al.  A Tentative Comparison of Numerical Approximate Reasoning Methodologies , 1987, Int. J. Man Mach. Stud..

[48]  H. E. Stephanou,et al.  Perspectives on imperfect information processing , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  Dimiter Driankov Reasoning with Consistent Probabilities , 1987, IJCAI.

[50]  Philip G. Calabrese,et al.  An algebraic synthesis of the foundations of logic and probability , 1987, Inf. Sci..

[51]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[52]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[53]  Ronald Fagin,et al.  A logic for reasoning about probabilities , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[54]  Conditionally coherent qualitative probabilities , 1988 .

[55]  I. R. Goodman A measure-free approach to conditioning , 1988, Int. J. Approx. Reason..

[56]  Mary McLeish A Note on Probabilistic Logic , 1988, AAAI.

[57]  András Prékopa,et al.  Boole-Bonferroni Inequalities and Linear Programming , 1988, Oper. Res..

[58]  I. Goodman Conditional Objects and the Modeling of Uncertainties , 1988 .

[59]  Endre Boros,et al.  Closed Form Two-Sided Bounds for Probabilities that At Least r and Exactly r Out of n Events Occur , 1989, Math. Oper. Res..

[60]  Yves Crama,et al.  Recognition problems for special classes of polynomials in 0–1 variables , 1989, Math. Program..

[61]  W. Spears,et al.  Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complete Problems , 1983 .

[62]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[63]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[64]  Jeff B. Paris,et al.  On the applicability of maximum entropy to inexact reasoning , 1989, Int. J. Approx. Reason..

[65]  Thomas B. Kane Maximum Entropy in Nilsson's Probabilistic Logic , 1989, IJCAI.

[66]  Kathryn B. Laskey,et al.  Assumptions, Beliefs and Probabilities , 1989, Artif. Intell..

[67]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[68]  R. A. Young,et al.  A Hybrid Genetic Algorithm for a Logic Problem , 1990, European Conference on Artificial Intelligence.

[69]  Thomas B. Kane Enhancing the inference mechanism of Nilsson's probabilistic logic , 1990, Int. J. Intell. Syst..

[70]  Giulianella Coletti,et al.  Coherent qualitative probability , 1990 .

[71]  L. C. van der Gaag,et al.  Probability-based models for plausible reasoning , 1990 .

[72]  Pierre Hansen,et al.  The basic algorithm for pseudo-Boolean programming revisited , 1988, Discret. Appl. Math..

[73]  L. C. Gaag Computing probability intervals under independency constraints , 1990, UAI.

[74]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge - a logical approach to probabilities , 1991 .

[75]  András Prékopa Sharp Bounds on Probabilities Using Linear Programming , 1990, Oper. Res..

[76]  András Prékopa,et al.  The discrete moment problem and linear programming , 1990, Discret. Appl. Math..

[77]  P. G. Calabrese,et al.  Reasoning with uncertainty using conditional logic and probability , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[78]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[79]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[80]  Frank Lad,et al.  The fundamental theorem of prevision , 1990 .

[81]  J. Grzymala-Busse Managing uncertainty in expert systems , 1991 .

[82]  P. Calabrese Deduction and Inference Using Conditional Logic and Probability , 1991 .

[83]  Thomas B. Kane Reasoning with Maximum Entropy in Expert Systems , 1991 .

[84]  Andrew M. Wallace,et al.  Model-Based Object Recognition using Probabilistic Logic and Maximum Entropy , 1991, Int. J. Pattern Recognit. Artif. Intell..

[85]  Endre Boros,et al.  On the Existence of a Feasible Flow in a Stochastic Transportation Network , 1991, Oper. Res..

[86]  Pierre Hansen,et al.  Column Generation Methods for Probabilistic Logic , 1989, INFORMS J. Comput..

[87]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[88]  Pierre Hansen,et al.  On-line and off-line vertex enumeration by adjacency lists , 1991, Oper. Res. Lett..

[89]  Jun Gu,et al.  Efficient local search for very large-scale satisfiability problems , 1992, SGAR.

[90]  Thomas Brett Kane Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism , 1992 .

[91]  J. Dickey,et al.  Numerical application of the fundamental theorem of prevision , 1992 .

[92]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[93]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[94]  S. Kounias,et al.  Upper and lower bounds for the probability that r events occur , 1993 .

[95]  John N. Hooker,et al.  A linear programming framework for logics of uncertainty , 1993, [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

[96]  Nils J. Nilsson,et al.  Probabilistic Logic Revisited , 1993, Artif. Intell..

[97]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[98]  Charles Leake,et al.  Conditional Inference and Logic for Intelligent Systems , 1993 .

[99]  Alan Bundy,et al.  A comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence , 1994, Int. J. Hum. Comput. Stud..

[100]  P. G. Calabrese,et al.  A Theory of Conditional Information with Applications , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[101]  Peter Haddawy,et al.  Anytime Deduction for Probabilistic Logic , 1994, Artif. Intell..

[102]  D. Bamber Probabilistic Entailment of Conditionals by Conditionals , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[103]  Yves Crama,et al.  Approximation algorithms for integer covering problems via greedy column generation , 1994 .

[104]  David P. Williamsony A New 3 4 -approximation Algorithm for Max Sat , 1994 .

[105]  Martín Abadi,et al.  Decidability and Expressiveness for First-Order Logics of Probability , 1994, Inf. Comput..

[106]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[107]  E. Hayes Mean Values. , 2022, Science.