Artificial ribozyme switches containing natural riboswitch aptamer domains.

RNA Lego: The use of natural riboswitch aptamers in synthetic RNA switches (see picture) should broaden the scope of artificial RNA regulators dramatically. It is shown that thiamine pyrophosphate (TPP) aptamers can be used in engineered devices as very sensitive switches of gene expression in unmodified organisms. The approach demonstrates that intrinsic metabolites can be utilized as external effectors of cellular functions.

[1]  Biochemical studies of pyrithiamine-resistant mutants of Escherichia coli K12. , 1976, Journal of biochemistry.

[2]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[3]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[4]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[5]  E. Settembre,et al.  Structural biology of enzymes of the thiamin biosynthesis pathway. , 2003, Current opinion in structural biology.

[6]  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[7]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[8]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[9]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[10]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[11]  R. Breaker,et al.  Riboswitches as versatile gene control elements. , 2005, Current opinion in structural biology.

[12]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[13]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[14]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[15]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[16]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[17]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[18]  Y. Yokobayashi,et al.  Reengineering a natural riboswitch by dual genetic selection. , 2007, Journal of the American Chemical Society.

[19]  S. Wijmenga,et al.  Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. , 2007, RNA.

[20]  Juan Miranda-Ríos,et al.  The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. , 2007, Structure.

[21]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[22]  Maung Nyan Win,et al.  RNA as a Versatile and Powerful Platform for Engineering Genetic Regulatory Tools , 2007, Biotechnology & genetic engineering reviews.

[23]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[24]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[25]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Gelfand,et al.  Abundance and functional diversity of riboswitches in microbial communities , 2007, BMC Genomics.

[27]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[28]  Renate Rieder,et al.  Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach , 2007, Nucleic acids research.

[29]  Michael Famulok,et al.  Conformational changes in the expression domain of the Escherichia coli thiM riboswitch , 2007, Nucleic acids research.

[30]  Markus Wieland,et al.  Artificial Riboswitches: Synthetic mRNA‐Based Regulators of Gene Expression , 2008, Chembiochem : a European journal of chemical biology.

[31]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[32]  N. Sugimoto,et al.  Riboswitches for Enhancing Target Gene Expression in Eukaryotes , 2008, Chembiochem : a European journal of chemical biology.

[33]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[34]  Atsushi Ogawa,et al.  An Artificial Aptazyme‐Based Riboswitch and its Cascading System in E. coli , 2008, Chembiochem : a European journal of chemical biology.

[35]  B. Suess,et al.  Engineered riboswitches: Overview, problems and trends , 2008, RNA biology.

[36]  Markus Wieland,et al.  Ein Aptazym‐Design für die RNA‐basierte Schaltung der Genexpression in Bakterien , 2008 .

[37]  R. Micura,et al.  The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments , 2008, Nature Protocols.

[38]  M. Famulok,et al.  Secondary structures and functional requirements for thiM riboswitches from Desulfovibrio vulgaris, Erwinia carotovora and Rhodobacter spheroides , 2008, Biological chemistry.

[39]  A. Ferré-D’Amaré,et al.  Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. , 2008, Chemistry & biology.

[40]  Tan Inoue,et al.  Synthetic biology with RNA motifs. , 2009, The international journal of biochemistry & cell biology.