Reference program for molecular calculations with Slater‐type orbitals
暂无分享,去创建一个
J. Fernández Rico | R. López | A. Aguado | I. Ema | G. Ramírez | A. Aguado | R. López | G. Ramírez | I. Ema | J. Fernández Rico
[1] S. F. Boys,et al. A Quantum Variational Calculation for HCHO , 1960 .
[2] D. Rinaldi,et al. Integrals over B functions basis sets. I. Three‐center molecular integrals, a numerical study , 1994 .
[3] R. López,et al. Calculation of the one‐electron two‐center integrals with STOS using recurrence‐based algorithms , 1988 .
[4] A. Bouferguene,et al. Some convergence aspects of the one‐center expansion methods , 1994 .
[5] D. Rinaldi,et al. A new single‐center method to compute molecular integrals of quantum chemistry in slater‐type orbital basis of functions , 1994 .
[6] A. W. Niukkanen,et al. Calculation of molecular electronic structure with the help of the Σ-separation method: preliminary results and prospective development , 1992 .
[7] J. Pople,et al. Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .
[8] G. Diercksen,et al. Electron Affinity of SF6 , 1997 .
[9] Herbert H. H. Homeier,et al. Calculation of multicenter electron repulsion integrals in Slater-type basis sets using the {Sigma}-separation method , 1995 .
[10] Guillermo Ramírez,et al. Calculation of many-centre two-electron molecular integrals with STO , 1997 .
[11] Jorge E. Pérez,et al. Numerical evaluation of three‐ and four‐center bielectronic integrals using exponential‐type atomic orbitals , 1995, J. Comput. Chem..
[12] Herbert W. Jones,et al. Löwdin α-function, overlap integral, and computer algebra , 1992 .
[13] A. Bouferguene,et al. STOP: A slater‐type orbital package for molecular electronic structure determination , 1996 .
[14] W. Lipscomb,et al. Molecular SCF Calculations on CH4, C2H2, C2H4, C2H6, BH3, B2H6, NH3, and HCN , 1966 .
[15] Herbert H. H. Homeier,et al. Programs for the evaluation of nuclear attraction integrals with B functions , 1993 .
[16] Guillermo Ramírez,et al. Large gaussian expansions of sto's for the calculation of many-center molecular integrals with slater basis , 1987 .
[17] V. R. Saunders,et al. An Introduction to Molecular Integral Evaluation , 1975 .
[18] H. W. Jones. Developments in multicenter molecular integrals over STOs using expansions in spherical harmonics , 1994 .
[19] R. López,et al. Molecular integrals with Slater basis. III. Three‐center nuclear attraction integrals , 1991 .
[20] A. W. Niukkanen,et al. A simplified E-separation method: multicenter integrals and test calculations of small molecules , 1994 .
[21] H. Schaefer. Methods of Electronic Structure Theory , 1977 .
[22] C. Weatherford,et al. ETO Multicenter Molecular Integrals , 1982 .
[23] Herbert H. H. Homeier,et al. Programs for the evaluation of overlap integrals with B functions , 1992 .
[24] Herbert H. H. Homeier,et al. On the Evaluation of Overlap Integrals with Exponential-type Basis Functions , 1992 .
[25] P. Oppeneer,et al. Fast and Stable Algorithm for the Analytical Computation of Two-Center Coulomb and Overlap Integrals over Slater-Type Orbitals , 1994 .
[26] R. Phillips,et al. Implementation of the table CI method: Matrix elements between configurations with the same number of open-shells , 1985 .
[27] Herbert W. Jones,et al. Evaluation of the alpha‐function for large parameter values , 1996 .
[28] J. Fernández Rico. Long‐Range multicenter integrals with slater functions: Gauss transform‐based methods , 1993, J. Comput. Chem..
[29] B. Miguel,et al. Ab initio configuration interactioncalculations of ground state and lower excited states ofZn2 using optimized Slater-typewavefunctions , 1997 .
[30] Enrico Clementi,et al. Roothaan-Hartree-Fock atomic wavefunctions , 1974 .
[31] T. H. Dunning. Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .
[32] J. Pople,et al. Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .
[33] R. López,et al. Auxiliary functions for Slater molecular integrals , 1993 .
[34] Michel Dupuis,et al. Evaluation of molecular integrals over Gaussian basis functions , 1976 .
[35] H. W. Jones. Benchmark values for two‐center Coulomb integrals over slater‐type orbitals , 1993 .
[36] C. Tablero,et al. Molecular integrals with Slater basis. V. Recurrence algorithm for the exchange integrals , 1994 .
[37] R. López,et al. Improved algorithm for the calculation of one‐electron two‐center integrals with STOs , 1989 .
[38] Herbert H. H. Homeier,et al. On the combination of two methods for the calculation of multicenter integrals using exponential–type orbitals , 1992 .
[39] Guillermo Ramírez,et al. Molecular integrals with Slater basis. II. Fast computational algorithms , 1989 .
[40] J. Rico,et al. Molecular integrals with Slater basis. IV: Ellipsoidal coordinate methods for three-center nuclear attraction integrals , 1992 .
[41] H. Tatewaki,et al. The excited states of Zn2 and Zn3. Inclusion of the correlation effects , 1985 .
[42] Talman. Expression for overlap integrals of Slater orbitals. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[43] M. Paniagua,et al. Calculation of two-center one-electron molecular integrals with STOs , 1991 .
[44] Xialan Dong,et al. Computation of auxiliary functions in STO molecular integrals up to arbitrary accuracy. I. evaluation of incomplete gamma function En(x) by forward recursion , 1993 .
[45] I. Guseinov. Spherically symmetrical properties of two-center overlap integrals over arbitrary atomic orbitals and translation coefficients for Slater-type orbitals , 1995 .
[46] R. López,et al. Calculation of integrals with slater basis from the one‐range expansion of the 0s function , 1990 .
[47] Jones,et al. Accurate ground-state calculations of H2+ using basis sets of atom-centered Slater-type orbitals. , 1993, Physical Review A. Atomic, Molecular, and Optical Physics.
[48] S. F. Boys,et al. Quantum Variational Calculations for a Range of C H 2 Configurations , 1960 .
[49] O. Salvetti,et al. Computation of many‐center exchange integrals over Slater orbitals up to 4d by means of optimized Gaussian expansions , 1993 .
[50] J. D. Talman. Molecular SCF calculations using a basis of numerical orbitals , 1993 .
[51] Guillermo Ramírez,et al. Molecular integrals with Slater basis. I. General approach , 1989 .
[52] Herbert H. H. Homeier,et al. Improved quadrature methods for the Fourier transform of a two-center product of exponential-type basis functions , 1992 .