Reference program for molecular calculations with Slater‐type orbitals

A program for computing all the integrals appearing in molecular calculation with Slater‐type orbitals is reported. The program is mainly intended as a reference for testing and comparing other algorithms and techniques. An analysis of the performance of the program is presented, paying special attention to the computational cost and the accuracy of the results. Results are also compared with others obtained with Gaussian basis sets of similar quality. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1284–1293, 1998

[1]  S. F. Boys,et al.  A Quantum Variational Calculation for HCHO , 1960 .

[2]  D. Rinaldi,et al.  Integrals over B functions basis sets. I. Three‐center molecular integrals, a numerical study , 1994 .

[3]  R. López,et al.  Calculation of the one‐electron two‐center integrals with STOS using recurrence‐based algorithms , 1988 .

[4]  A. Bouferguene,et al.  Some convergence aspects of the one‐center expansion methods , 1994 .

[5]  D. Rinaldi,et al.  A new single‐center method to compute molecular integrals of quantum chemistry in slater‐type orbital basis of functions , 1994 .

[6]  A. W. Niukkanen,et al.  Calculation of molecular electronic structure with the help of the Σ-separation method: preliminary results and prospective development , 1992 .

[7]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[8]  G. Diercksen,et al.  Electron Affinity of SF6 , 1997 .

[9]  Herbert H. H. Homeier,et al.  Calculation of multicenter electron repulsion integrals in Slater-type basis sets using the {Sigma}-separation method , 1995 .

[10]  Guillermo Ramírez,et al.  Calculation of many-centre two-electron molecular integrals with STO , 1997 .

[11]  Jorge E. Pérez,et al.  Numerical evaluation of three‐ and four‐center bielectronic integrals using exponential‐type atomic orbitals , 1995, J. Comput. Chem..

[12]  Herbert W. Jones,et al.  Löwdin α-function, overlap integral, and computer algebra , 1992 .

[13]  A. Bouferguene,et al.  STOP: A slater‐type orbital package for molecular electronic structure determination , 1996 .

[14]  W. Lipscomb,et al.  Molecular SCF Calculations on CH4, C2H2, C2H4, C2H6, BH3, B2H6, NH3, and HCN , 1966 .

[15]  Herbert H. H. Homeier,et al.  Programs for the evaluation of nuclear attraction integrals with B functions , 1993 .

[16]  Guillermo Ramírez,et al.  Large gaussian expansions of sto's for the calculation of many-center molecular integrals with slater basis , 1987 .

[17]  V. R. Saunders,et al.  An Introduction to Molecular Integral Evaluation , 1975 .

[18]  H. W. Jones Developments in multicenter molecular integrals over STOs using expansions in spherical harmonics , 1994 .

[19]  R. López,et al.  Molecular integrals with Slater basis. III. Three‐center nuclear attraction integrals , 1991 .

[20]  A. W. Niukkanen,et al.  A simplified E-separation method: multicenter integrals and test calculations of small molecules , 1994 .

[21]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[22]  C. Weatherford,et al.  ETO Multicenter Molecular Integrals , 1982 .

[23]  Herbert H. H. Homeier,et al.  Programs for the evaluation of overlap integrals with B functions , 1992 .

[24]  Herbert H. H. Homeier,et al.  On the Evaluation of Overlap Integrals with Exponential-type Basis Functions , 1992 .

[25]  P. Oppeneer,et al.  Fast and Stable Algorithm for the Analytical Computation of Two-Center Coulomb and Overlap Integrals over Slater-Type Orbitals , 1994 .

[26]  R. Phillips,et al.  Implementation of the table CI method: Matrix elements between configurations with the same number of open-shells , 1985 .

[27]  Herbert W. Jones,et al.  Evaluation of the alpha‐function for large parameter values , 1996 .

[28]  J. Fernández Rico Long‐Range multicenter integrals with slater functions: Gauss transform‐based methods , 1993, J. Comput. Chem..

[29]  B. Miguel,et al.  Ab initio configuration interactioncalculations of ground state and lower excited states ofZn2 using optimized Slater-typewavefunctions , 1997 .

[30]  Enrico Clementi,et al.  Roothaan-Hartree-Fock atomic wavefunctions , 1974 .

[31]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[32]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[33]  R. López,et al.  Auxiliary functions for Slater molecular integrals , 1993 .

[34]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[35]  H. W. Jones Benchmark values for two‐center Coulomb integrals over slater‐type orbitals , 1993 .

[36]  C. Tablero,et al.  Molecular integrals with Slater basis. V. Recurrence algorithm for the exchange integrals , 1994 .

[37]  R. López,et al.  Improved algorithm for the calculation of one‐electron two‐center integrals with STOs , 1989 .

[38]  Herbert H. H. Homeier,et al.  On the combination of two methods for the calculation of multicenter integrals using exponential–type orbitals , 1992 .

[39]  Guillermo Ramírez,et al.  Molecular integrals with Slater basis. II. Fast computational algorithms , 1989 .

[40]  J. Rico,et al.  Molecular integrals with Slater basis. IV: Ellipsoidal coordinate methods for three-center nuclear attraction integrals , 1992 .

[41]  H. Tatewaki,et al.  The excited states of Zn2 and Zn3. Inclusion of the correlation effects , 1985 .

[42]  Talman Expression for overlap integrals of Slater orbitals. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[43]  M. Paniagua,et al.  Calculation of two-center one-electron molecular integrals with STOs , 1991 .

[44]  Xialan Dong,et al.  Computation of auxiliary functions in STO molecular integrals up to arbitrary accuracy. I. evaluation of incomplete gamma function En(x) by forward recursion , 1993 .

[45]  I. Guseinov Spherically symmetrical properties of two-center overlap integrals over arbitrary atomic orbitals and translation coefficients for Slater-type orbitals , 1995 .

[46]  R. López,et al.  Calculation of integrals with slater basis from the one‐range expansion of the 0s function , 1990 .

[47]  Jones,et al.  Accurate ground-state calculations of H2+ using basis sets of atom-centered Slater-type orbitals. , 1993, Physical Review A. Atomic, Molecular, and Optical Physics.

[48]  S. F. Boys,et al.  Quantum Variational Calculations for a Range of C H 2 Configurations , 1960 .

[49]  O. Salvetti,et al.  Computation of many‐center exchange integrals over Slater orbitals up to 4d by means of optimized Gaussian expansions , 1993 .

[50]  J. D. Talman Molecular SCF calculations using a basis of numerical orbitals , 1993 .

[51]  Guillermo Ramírez,et al.  Molecular integrals with Slater basis. I. General approach , 1989 .

[52]  Herbert H. H. Homeier,et al.  Improved quadrature methods for the Fourier transform of a two-center product of exponential-type basis functions , 1992 .