An efficient density-functional-theory force evaluation for large molecular systems.

An efficient, linear-scaling implementation of Kohn-Sham density-functional theory for the calculation of molecular forces for systems containing hundreds of atoms is presented. The density-fitted Coulomb force contribution is calculated in linear time by combining atomic integral screening with the continuous fast multipole method. For higher efficiency and greater simplicity, the near-field Coulomb force contribution is calculated by expanding the solid-harmonic Gaussian basis functions in Hermite rather than Cartesian Gaussians. The efficiency and linear complexity of the molecular-force evaluation is demonstrated by sample calculations and applied to the geometry optimization of a few selected large systems.

[1]  V. Lebedev Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion☆ , 1975 .

[2]  H. Bernhard Schlegel,et al.  Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces , 1998 .

[3]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[4]  Dennis R. Salahub,et al.  Analytical gradient of the linear combination of Gaussian‐type orbitals—local spin density energy , 1989 .

[5]  Hui Lu,et al.  Solvent molecules bridge the mechanical unfolding transition state of a protein , 2008, Proceedings of the National Academy of Sciences.

[6]  H. V. Rasika Dias,et al.  Copper(I) Carbonyl Complex of a Trifluoromethylated Tris(pyrazolyl)borate Ligand , 1995 .

[7]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[8]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[9]  Patrizia Calaminici,et al.  Robust and efficient density fitting. , 2009, The Journal of chemical physics.

[10]  Yihan Shao,et al.  An improved J matrix engine for density functional theory calculations , 2000 .

[11]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[12]  T. Helgaker,et al.  Variational and robust density fitting of four-center two-electron integrals in local metrics. , 2008, The Journal of chemical physics.

[13]  Jan Almlöf,et al.  THE COULOMB OPERATOR IN A GAUSSIAN PRODUCT BASIS , 1995 .

[14]  Trygve Helgaker,et al.  A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians. , 2007, Physical chemistry chemical physics : PCCP.

[15]  Roland Lindh,et al.  ON THE USE OF A HESSIAN MODEL FUNCTION IN MOLECULAR GEOMETRY OPTIMIZATIONS , 1995 .

[16]  G. Scuseria,et al.  Analytic energy gradients for the Gaussian very fast multipole method (GvFMM) , 1996 .

[17]  Dmitrij Rappoport,et al.  Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. , 2005, The Journal of chemical physics.

[18]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[19]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[20]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[21]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[22]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[23]  Dunlap,et al.  Local-density-functional total energy gradients in the linear combination of Gaussian-type orbitals method. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[24]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[25]  Trygve Helgaker,et al.  The efficient optimization of molecular geometries using redundant internal coordinates , 2002 .

[26]  Martin Head-Gordon,et al.  A J matrix engine for density functional theory calculations , 1996 .

[27]  V. I. Lebedev,et al.  Spherical quadrature formulas exact to orders 25–29 , 1977 .

[28]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[29]  R. Fletcher Practical Methods of Optimization , 1988 .

[30]  Paweł Sałek,et al.  Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. , 2004, The Journal of chemical physics.

[31]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[32]  Trygve Helgaker,et al.  Systematic determination of MCSCF equilibrium and transition structures and reaction paths , 1986 .

[33]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[34]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[35]  Olivier Coulaud,et al.  An efficient method for the coordinate transformation problem of massively three-dimensional networks , 2001 .

[36]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[37]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[38]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[39]  Trygve Helgaker,et al.  Geometrical derivatives and magnetic properties in atomic-orbital density-based Hartree-Fock theory , 2001 .

[40]  Walter Thiel,et al.  Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates , 2000 .

[41]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[42]  Ernst Joachim Weniger,et al.  The spherical tensor gradient operator , 2005, math-ph/0505018.

[43]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[44]  B. I. Dunlap,et al.  Robust variational fitting: Gáspár's variational exchange can accurately be treated analytically , 2000 .

[45]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[46]  M. Ratner Molecular electronic-structure theory , 2000 .

[47]  A. St.-Amant,et al.  Linear scaling for the charge density fitting procedure of the linear combination of Gaussian-type orbitals density functional method , 1996 .

[48]  Paweł Sałek,et al.  Linear-scaling implementation of molecular electronic self-consistent field theory. , 2007, The Journal of chemical physics.

[49]  Xiaosong Li,et al.  First order simultaneous optimization of molecular geometry and electronic wave function. , 2008, The Journal of chemical physics.

[50]  H. Bernhard Schlegel,et al.  Geometry optimization methods for modeling large molecules , 2003 .

[51]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[52]  Olivier Coulaud,et al.  Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization , 2000 .

[53]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[54]  H. Bernhard Schlegel,et al.  Methods for optimizing large molecules. II. Quadratic search , 1999 .

[55]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[56]  Patrizia Calaminici,et al.  First-Principle Calculations of Large Fullerenes. , 2009, Journal of chemical theory and computation.

[57]  Peter Pulay,et al.  Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..

[58]  Tom Ziegler,et al.  The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration , 1988 .

[59]  Jon Baker,et al.  Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules , 1999 .

[60]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .