A recursive formulation of collocation in terms of canonical polynomials

In this paper we discuss two related but analytically different techniques: the collocation method and Ortiz's recursive formulation of the Tau Method. Specifically, we show that it is possible to simulate with the Tau Method collocation approximants for any desired degree. We give a representation for collocation approximants in terms ofshifted canonical polynomials, which are introduced here. We show that in the linear case computing a collocation approximant of orderN by this new approach requiresO(N) arithmetic operations while obtaining the same approximant by the direct approach involvesO(N3). Furthermore, our technique leads to a recursive formulation of collocation. We discuss separately the linear and nonlinear cases and propose a more efficienteconomized approach for the latter.ZusammenfassungWir diskutieren zwei verwandte aber analytisch verschiedene Techniken: Kollokation und die rekursive Formulierung der Tau-Methode von Ortiz. Dabei zeigen wir, dass man mit der Tau-Methode Kollokationsnäherungen beliebigen Grades simulieren kann. Wir stellen Kollokationsnäherungen durch hier eingeführte verschobene kanonische Polynome dar. Wir zeigen, dass die Berechnung einer Kolokationsnäherung der OrdnungN bei diesem Vorgehen im linearen Fall nurO(N) Operationen kostet im Vergleich mitO(N3) Operationen beim direkten Vorgehen. Ausserdem führt unser Vorgehen auf eine rekursive Formulierung der Kollokation. Wir behandeln den linearen und den nichtlinearen Fall und schlagen für letzteren ein effizienteres Vorgehen vor.

[1]  C. Lanczos Applied Analysis , 1961 .

[2]  Eduardo L. Ortiz,et al.  An operational approach to the Tau method for the numerical solution of non-linear differential equations , 1981, Computing.

[3]  S. Namasivayam,et al.  Differential equations with piecewise approximate coefficients: Discrete and continuous estimation for initial and boundary value problems , 1992 .

[4]  E. L. Ortiz,et al.  Error analysis of the Tau Method: Dependence of the error on the degree and on the length of the interval of approximation , 1993 .

[5]  E. Ortiz,et al.  On the numerical solution of nonlinear and functional differential equations with the tau method , 1978 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  Daniele Funaro,et al.  Computing the inverse of the Chebyshev collocation derivative , 1988 .

[8]  L. Collatz The numerical treatment of differential equations , 1961 .

[9]  E. L. Ortiz,et al.  On the convergence of the Tau method for nonlinear differential equations of Riccati's type , 1985 .

[10]  H. Samara,et al.  A unified approach to the Tau Method and Chebyshev series expansion techniques , 1993 .

[11]  Eduardo L. Ortiz,et al.  The Tau Method , 1969 .

[12]  K. Wright,et al.  Some relationships between implicit Runge-Kutta, collocation and Lanczosτ methods, and their stability properties , 1970 .

[13]  S. Namasivayam,et al.  Error analysis of the Tau method: dependence of the approximation error on the choice of perturbation term , 1993 .

[14]  H. Heinrich,et al.  L. Collatz, The Numerical Treatment of Differential Equations. XV + 568 S. m. 118 Abb. Berlin/Göttingen/Heidelberg 1959. Springer‐Verlag. Preis geb. 93,60 DM , 1961 .

[15]  T. S. Horner,et al.  Chebyshev polynomials in the numerical solution of differential equations , 1977 .

[16]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[17]  E. L. Ortiz Step by step Tau method—Part I. Piecewise polynomial approximations , 1975 .

[18]  P. Onumanyi,et al.  Numerical solution of stiff and singularly perturbed boundary value problems with a segmented-adaptive formulation of the tau method , 1984 .

[19]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[20]  S. P. Nørsett Collocation and perturbed collocation methods , 1980 .

[21]  Syvert P. Norsett Splines and Collocation for Ordinary Initial Value Problems , 1984 .