SS-SVM (3SVM): A New Classification Method for Hepatitis Disease Diagnosis

In this paper, a new classification approach combining support vector machine with scatter search approach for hepatitis disease diagnosis is presented, called 3SVM. The scatter search approach is used to find near optimal values of SVM parameters and its kernel parameters. The hepatitis dataset is obtained from UCI. Experimental results and comparisons prove that the 3SVM gives better outcomes and has a competitive performance relative to other published methods found in literature, where the average accuracy rate obtained is 98.75%.

[1]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[2]  Belén Melián-Batista,et al.  Solving feature subset selection problem by a Parallel Scatter Search , 2006, Eur. J. Oper. Res..

[3]  Gang Wang,et al.  A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis , 2011, Expert Syst. Appl..

[4]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[5]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[6]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[7]  Shih-Wei Lin,et al.  Parameter determination and feature selection for C4.5 algorithm using scatter search approach , 2012, Soft Comput..

[8]  Kemal Polat,et al.  Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation , 2006, Digit. Signal Process..

[9]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[10]  Fred W. Glover,et al.  Surrogate Constraints , 1968, Oper. Res..

[11]  Lutz Hamel,et al.  Knowledge Discovery with Support Vector Machines , 2009 .

[12]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[13]  David G. Stork,et al.  Pattern Classification , 1973 .

[14]  R. Ali Abbaspour,et al.  Evaluation of Genetic Algorithms for tuning SVM parameters in multi-class problems , 2010, 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI).

[15]  Lior Rokach,et al.  Pattern Classification Using Ensemble Methods , 2009, Series in Machine Perception and Artificial Intelligence.

[16]  Mu-Chen Chen,et al.  Applying neural network and scatter search to optimize parameter design with dynamic characteristics , 2005, J. Oper. Res. Soc..

[17]  M. Serdar Bascil,et al.  A Study on Hepatitis Disease Diagnosis Using Probabilistic Neural Network , 2012, Journal of Medical Systems.

[18]  Kourosh Mozafari,et al.  Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA) , 2012, Comput. Methods Programs Biomed..

[19]  Kiri Wagstaff,et al.  Alpha seeding for support vector machines , 2000, KDD '00.

[20]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[21]  Mohammad Saniee Abadeh,et al.  A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis , 2011, Expert Syst. Appl..

[22]  Peter Williams,et al.  A Geometrical Method to Improve Performance of the Support Vector Machine , 2007, IEEE Transactions on Neural Networks.

[23]  Fred W. Glover,et al.  Principles of scatter search , 2006, Eur. J. Oper. Res..

[24]  Yuan Ren,et al.  Determination of Optimal SVM Parameters by Using GA/PSO , 2010, J. Comput..

[25]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[26]  Shuo-Yan Chou,et al.  Enhancing the classification accuracy by scatter-search-based ensemble approach , 2011, Appl. Soft Comput..

[27]  Chih-Hung Wu,et al.  A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy , 2007, Expert Syst. Appl..

[28]  Esin Dogantekin,et al.  A new intelligent hepatitis diagnosis system: PCA-LSSVM , 2011, Expert Syst. Appl..

[29]  William Stafiord Noble,et al.  Support vector machine applications in computational biology , 2004 .

[30]  Pei-Chann Chang,et al.  A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification , 2011, Appl. Soft Comput..

[31]  Alan H. Fielding,et al.  Cluster and Classification Techniques for the Biosciences , 2006 .

[32]  Bernhard Schölkopf,et al.  Support Vector Machine Applications in Computational Biology , 2004 .

[33]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[34]  Sheng Liu,et al.  SVM parameters optimization algorithm and its application , 2008, 2008 IEEE International Conference on Mechatronics and Automation.

[35]  Ruxandra Stoean,et al.  Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C , 2011, Artif. Intell. Medicine.

[36]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[37]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.