A Mechanism to Self-Assemble Patterns with Autonomous Robots

There are examples of robotic systems in which autonomous mobile robots self-assemble into larger connected entities. However, existing systems display little or no autonomous control over the shape of the connected entity thus formed. We describe a novel distributed mechanism that allows autonomous mobile robots to self-assemble into pre-specified patterns. Global patterns are 'grown' using locally applicable rules and local visual perception only. In this study, we focus on the low-level navigation and directional self-assembly part of the pattern formation process. We analyse the precision of this mechanism on real robots.

[1]  Ichiro Suzuki,et al.  Distributed algorithms for formation of geometric patterns with many mobile robots , 1996, J. Field Robotics.

[2]  Marco Dorigo,et al.  Autonomous Self-Assembly in Swarm-Bots , 2006, IEEE Transactions on Robotics.

[3]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Wei-Min Shen,et al.  CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities , 2000, Auton. Robots.

[5]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[6]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[7]  Anders Lyhne Christensen,et al.  SWARMORPH: Morphology Control with a Swarm of Self-Assembling Robots , 2007 .

[8]  Marco Dorigo,et al.  Morphology control in a multirobot system , 2007, IEEE Robotics & Automation Magazine.

[9]  Francesco Mondada,et al.  Self-assembly on Demand in a Group of Physical Autonomous Mobile Robots Navigating Rough Terrain , 2005, ECAL.

[10]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[11]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[12]  Marco Dorigo,et al.  Swarm Robotics: Special Issue Editorial , 2004 .

[13]  Yoshio Kawauchi,et al.  A principle of distributed decision making of Cellular Robotic System (CEBOT) , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[14]  Wei-Min Shen,et al.  Docking among independent and autonomous CONRO self-reconfigurable robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  George J. Pappas,et al.  Feasible formations of multi-agent systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[16]  Vijay Kumar,et al.  A Framework for Vision Based Formation Control , 2002 .

[17]  Shigeo Hirose,et al.  Proposal for cooperative robot "Gunryu" composed of autonomous segments , 1996, Robotics Auton. Syst..

[18]  Ying Zhang,et al.  Modular Reconfigurable Robots in Space Applications , 2003, Auton. Robots.

[19]  Marco Dorigo,et al.  Group Transport Along a Robot Chain in a Self-Organised Robot Colony , 2006, IAS.

[20]  Luca Maria Gambardella,et al.  The cooperation of swarm-bots: physical interactions in collective robotics , 2005, IEEE Robotics & Automation Magazine.

[21]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[22]  Alan F. T. Winfield,et al.  Special issue on swarm robotics , 2008, Swarm Intelligence.

[23]  Toshio Fukuda,et al.  Cell Structured robotic system CEBOT: Control, planning and communication methods , 1991, Robotics Auton. Syst..