Depth and Stanley depth of the path ideal associated to an $n$-cyclic graph
暂无分享,去创建一个
[1] Richard P. Stanley,et al. Linear diophantine equations and local cohomology , 1982 .
[2] J. Okninski,et al. On monomial algebras , 1988, Semigroup Algebras.
[3] W. Vasconcelos. Arithmetic of Blowup Algebras , 1994 .
[4] Asia Rauf. STANLEY DECOMPOSITIONS, PRETTY CLEAN FILTRATIONS AND REDUCTIONS MODULO REGULAR ELEMENTS , 2007, 0708.1481.
[5] Marius Vladoiu,et al. How to compute the Stanley depth of a monomial ideal , 2007, 0712.2308.
[6] G. Rinaldo. An algorithm to compute the Stanley depth of monomial ideals , 2009 .
[7] Susan Morey. Depths of Powers of the Edge Ideal of a Tree , 2009, 0908.0553.
[8] William T. Trotter,et al. Interval partitions and Stanley depth , 2010, J. Comb. Theory, Ser. A.
[9] Jürgen Herzog,et al. A Survey on Stanley Depth , 2013 .
[10] Alin cStefan. Stanley depth of powers of the path ideal , 2014, 1409.6072.
[11] Mircea Cimpoeaş. On the Stanley depth of edge ideals of line and cyclic graphs , 2014, 1411.0624.
[12] Mircea Cimpoeaş. Stanley depth of the path ideal associated to a line graph , 2015, 1508.07540.
[13] Art M. Duval,et al. A non-partitionable Cohen–Macaulay simplicial complex , 2015, Discrete Mathematics & Theoretical Computer Science.
[14] Guangjun Zhu. A lower bound for Stanley depth of squarefree monomial ideals , 2016 .