Ontogeny of an iridescent nanostructure composed of hollow melanosomes
暂无分享,去创建一个
Ming Xiao | L. D’Alba | M. Shawkey | R. Buchholz | Ming Xiao | Matthew Schutte | Liliana D'Alba | Richard Buchholz | Matthew D. Shawkey | Matthew Schutte
[1] Hui Cao,et al. Self-assembly of amorphous biophotonic nanostructures by phase separation , 2009 .
[2] A. Parker. A geological history of reflecting optics , 2005, Journal of The Royal Society Interface.
[3] Chad M. Eliason,et al. How hollow melanosomes affect iridescent colour production in birds , 2013, Proceedings of the Royal Society B: Biological Sciences.
[4] Alistair N. Hume,et al. Melanosomes at a glance , 2008, Journal of Cell Science.
[5] Dana N. Peles,et al. Insights into melanosomes and melanin from some interesting spatial and temporal properties. , 2008, The journal of physical chemistry. B.
[6] G. Ghanem,et al. Has removal of excess cysteine led to the evolution of pheomelanin? , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.
[7] A. Blaaderen,et al. Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly(vinyl alcohol) Films , 1999 .
[8] O. Love,et al. Revisiting the condition‐dependence of melanin‐based plumage , 2014 .
[9] Bai Yang,et al. Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.
[10] Chad M. Eliason,et al. A photonic heterostructure produces diverse iridescent colours in duck wing patches , 2012, Journal of The Royal Society Interface.
[11] S. Mochrie,et al. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species , 2012, Journal of The Royal Society Interface.
[12] C. J. Murphy,et al. Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces , 2005 .
[13] R. Montgomerie,et al. Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour , 2006, Journal of Experimental Biology.
[14] 木下 修一,et al. Structural colors in the realm of nature , 2008 .
[15] Todd Emrick,et al. "Self-corralling" nanorods under an applied electric field. , 2006, Nano letters.
[16] M. Shawkey,et al. Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization , 2012, Journal of The Royal Society Interface.
[17] K. Klasing. Comparative Avian Nutrition , 1998 .
[18] D. Rubenstein,et al. Key ornamental innovations facilitate diversification in an avian radiation , 2013, Proceedings of the National Academy of Sciences.
[19] M. Norell,et al. Reconstruction of Microraptor and the Evolution of Iridescent Plumage , 2012, Science.
[20] Keng-hui Lin,et al. Entropically driven self–assembly and interaction in suspension , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] G. Hill,et al. Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae) , 2006, Journal of The Royal Society Interface.
[22] C. H. Greenewalt,et al. Iridescent Colors of Hummingbird Feathers , 1960 .
[23] L. Alibardi. Keratinization of sheath and calamus cells in developing and regenerating feathers. , 2007, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.
[24] G. Hill,et al. Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.) , 2006, Journal of The Royal Society Interface.
[25] H. Durrer,et al. Bildung der Schillerstruktur beim Glanzstar , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[26] G. Hill,et al. Function and evolution , 2006 .
[27] Dana N. Peles,et al. The red and the black. , 2010, Accounts of chemical research.
[28] G. Hill,et al. The effect of coccidial infection on iridescent plumage coloration in wild turkeys , 2005, Animal Behaviour.
[29] N. Marshall,et al. Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules , 2011, Proceedings of the Royal Society B: Biological Sciences.
[30] D. Parkinson,et al. Elucidation of the chemical composition of avian melanin , 2014 .
[31] Matthew D. Shawkey,et al. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers , 2011, Biology Letters.
[32] S. Fitzpatrick. Colour schemes for birds: structural coloration and signals of quality in feathers , 1998 .
[33] Fumio Oosawa,et al. Interaction between particles suspended in solutions of macromolecules , 1958 .
[34] G. Hill,et al. Nanostructure predicts intraspecific variation in ultraviolet–blue plumage colour† , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[35] R. Meldola. Sexual Selection , 1871, Nature.
[36] R. Prum,et al. How colorful are birds? Evolution of the avian plumage color gamut , 2011 .
[37] E. Dufresne,et al. Development of colour-producing β-keratin nanostructures in avian feather barbs , 2009, Journal of The Royal Society Interface.
[38] J. Zi,et al. Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.