Classification using Hierachical Na¨õve Bayes models

[1]  Thomas D. Nielsen,et al.  Latent variable discovery in classification models , 2004, Artif. Intell. Medicine.

[2]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[3]  Stuart J. Russell,et al.  Adaptive Probabilistic Networks with Hidden Variables , 1997, Machine Learning.

[4]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[5]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[6]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[7]  Manfred Jaeger,et al.  Probabilistic Classifiers and the Concepts They Recognize , 2003, ICML.

[8]  T. Roos,et al.  When Discriminative Learning of Bayesian Network Parameters Is Easy , 2003, IJCAI.

[9]  Tomas Kocka,et al.  Dimension Correction for Hierarchical Latent Class Models , 2002, UAI.

[10]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[11]  Nir Friedman,et al.  Learning the Dimensionality of Hidden Variables , 2001, UAI.

[12]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[13]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[14]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[15]  M. Pazzani Constructive Induction of Cartesian Product Attributes , 1998 .

[16]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[17]  Dale Schuurmans,et al.  Learning Bayesian Nets that Perform Well , 1997, UAI.

[18]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[19]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[20]  Michael J. Pazzani,et al.  Searching for Dependencies in Bayesian Classifiers , 1995, AISTATS.

[21]  Ron Kohavi,et al.  MLC++: a machine learning library in C++ , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[22]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[23]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[24]  Pat Langley,et al.  Induction of Recursive Bayesian Classifiers , 1993, ECML.

[25]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[26]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[27]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[28]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[29]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[32]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.