Norm convergence of multiple ergodic averages for commuting transformations

Abstract Let T1,…,Tl:X→X be commuting measure-preserving transformations on a probability space $(X, \mathcal {X}, \mu )$. We show that the multiple ergodic averages $\bfrac {1}{N} \sum _{n=0}^{N-1} f_1(T_1^n x) \cdots f_l(T_l^n x)$ are convergent in $L^2(X,\mathcal {X},\mu )$ as $N \to \infty $ for all $f_1,\ldots ,f_l \in L^\infty (X,\mathcal {X},\mu )$; this was previously established for l=2 by Conze and Lesigne [J. P. Conze and E. Lesigne. Théorèmes ergodique por les mesures diagonales. Bull. Soc. Math. France112 (1984), 143–175] and for general l assuming some additional ergodicity hypotheses on the maps Ti and TiTj−1 by Frantzikinakis and Kra [N. Frantzikinakis and B. Kra. Convergence of multiple ergodic averages for some commuting transformations. Ergod. Th. & Dynam. Sys.25 (2005), 799–809] (with the l=3 case of this result established earlier by Zhang [Q. Zhang. On the convergence of the averages $\bfrac {1}{N} \sum _{n=1}^N f_1(R^n x) f_2(S^n x) f_3(T^n x)$. Mh. Math.122 (1996), 275–300]). Our approach is combinatorial and finitary in nature, inspired by recent developments regarding the hypergraph regularity and removal lemmas, although we will not need the full strength of those lemmas. In particular, the l=2 case of our arguments is a finitary analogue of those by Conze and Lesigne.

[1]  Ulrich Kohlenbach Effective bounds from proofs in abstract functional analysis , 2007 .

[2]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[3]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[4]  Terence Tao,et al.  The Gaussian primes contain arbitrarily shaped constellations , 2005 .

[5]  J. Conze,et al.  Théorèmes ergodiques pour des mesures diagonales , 1984 .

[6]  Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales , 1993 .

[7]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[8]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[9]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[10]  Ben Green,et al.  New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries , 2009 .

[11]  Xiaokang Yu,et al.  Lebesgue Convergence Theorems and Reverse Mathematics , 1994, Math. Log. Q..

[12]  Terence Tao,et al.  A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .

[13]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[14]  T. Tao A quantitative version of the Besicovitch projection theorem via multiscale analysis , 2007, 0706.2646.

[15]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[16]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[17]  Benjamin Weiss,et al.  Entropy and isomorphism theorems for actions of amenable groups , 1987 .

[18]  Nikos Frantzikinakis,et al.  Convergence of multiple ergodic averages for some commuting transformations , 2004, Ergodic Theory and Dynamical Systems.

[19]  T. Tao,et al.  The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.

[20]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[21]  H. Towsner,et al.  LOCAL STABILITY OF ERGODIC AVERAGES , 2007, 0706.1512.

[22]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[23]  Douglas S. Bridges,et al.  Constructivity in Mathematics , 2004 .

[24]  Q. Zhang On convergence of the averages $$\frac{1}{N}\sum\nolimits_{n = 1}^N {f_1 (R^n x)f_2 (S^n x)f_3 (T^n x)} $$ , 1996 .

[25]  Andrea Sorbi,et al.  New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .

[26]  U. Kohlenbach Effective Uniform Bounds from Proofs in Abstract Functional Analysis , 2008 .

[27]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[28]  Ksenija Simic,et al.  The pointwise ergodic theorem in subsystems of second-order arithmetic , 2007, Journal of Symbolic Logic.

[29]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[30]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[31]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[32]  D. Berend,et al.  Jointly ergodic measure-preserving transformations , 1984 .

[33]  N. Wiener The ergodic theorem , 1939 .

[34]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[35]  J. Solymosi Note on a Generalization of Roth’s Theorem , 2003 .