Norm convergence of multiple ergodic averages for commuting transformations
暂无分享,去创建一个
[1] Ulrich Kohlenbach. Effective bounds from proofs in abstract functional analysis , 2007 .
[2] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[3] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[4] Terence Tao,et al. The Gaussian primes contain arbitrarily shaped constellations , 2005 .
[5] J. Conze,et al. Théorèmes ergodiques pour des mesures diagonales , 1984 .
[6] Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales , 1993 .
[7] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[8] Jozef Skokan,et al. Applications of the regularity lemma for uniform hypergraphs , 2006 .
[9] Georg Kreisel,et al. On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.
[10] Ben Green,et al. New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries , 2009 .
[11] Xiaokang Yu,et al. Lebesgue Convergence Theorems and Reverse Mathematics , 1994, Math. Log. Q..
[12] Terence Tao,et al. A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .
[13] J. Paris. A Mathematical Incompleteness in Peano Arithmetic , 1977 .
[14] T. Tao. A quantitative version of the Besicovitch projection theorem via multiscale analysis , 2007, 0706.2646.
[15] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[16] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[17] Benjamin Weiss,et al. Entropy and isomorphism theorems for actions of amenable groups , 1987 .
[18] Nikos Frantzikinakis,et al. Convergence of multiple ergodic averages for some commuting transformations , 2004, Ergodic Theory and Dynamical Systems.
[19] T. Tao,et al. The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.
[20] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[21] H. Towsner,et al. LOCAL STABILITY OF ERGODIC AVERAGES , 2007, 0706.1512.
[22] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.
[23] Douglas S. Bridges,et al. Constructivity in Mathematics , 2004 .
[24] Q. Zhang. On convergence of the averages $$\frac{1}{N}\sum\nolimits_{n = 1}^N {f_1 (R^n x)f_2 (S^n x)f_3 (T^n x)} $$ , 1996 .
[25] Andrea Sorbi,et al. New Computational Paradigms: Changing Conceptions of What is Computable , 2007 .
[26] U. Kohlenbach. Effective Uniform Bounds from Proofs in Abstract Functional Analysis , 2008 .
[27] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[28] Ksenija Simic,et al. The pointwise ergodic theorem in subsystems of second-order arithmetic , 2007, Journal of Symbolic Logic.
[29] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[30] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[31] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[32] D. Berend,et al. Jointly ergodic measure-preserving transformations , 1984 .
[33] N. Wiener. The ergodic theorem , 1939 .
[34] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[35] J. Solymosi. Note on a Generalization of Roth’s Theorem , 2003 .