A high efficiency full-chip thermal simulation algorithm

Thermal simulation has become increasingly important in chip design, especially in the nanometer regime, where the on-chip hot spots severely degrade the performance and reliability of the circuit and increase the leakage power. In this paper, we present a highly efficient and accurate thermal simulation algorithm that is capable of performing full-chip temperature calculations at the cell level. The algorithm is a combination of several important numerical techniques including the Green function method, the discrete cosine transform (DCT), and the frequency domain computations. Experimental results show that our algorithm can achieve orders of magnitude speedup compared with previous Green function based algorithms while maintaining the same accuracy.

[1]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[2]  Sung-Mo Kang,et al.  ILLIADS-T: an electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Robert G. Meyer,et al.  Modeling and analysis of substrate coupling in integrated circuits , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[4]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[5]  Sung-Mo Kang,et al.  An efficient method for hot-spot identification in ULSI circuits , 1999, ICCAD '99.

[6]  João Paulo Costa,et al.  Efficient techniques for accurate modeling and simulation of substrate coupling in mixed-signal IC's , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Lawrence T. Pileggi,et al.  Efficient full-chip thermal modeling and analysis , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[8]  Sachin Sapatnekar,et al.  Efficient Thermal Placement of Standard Cells in 3D ICs using a Force Directed Approach , 2003, ICCAD 2003.

[9]  Yong Zhan,et al.  Fast computation of the temperature distribution in VLSI chips using the discrete cosine transform and table look-up , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[10]  Pinaki Mazumder,et al.  Fast thermal analysis for VLSI circuits via semi-analytical Green's function in multi-layer materials , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[11]  Charlie Chung-Ping Chen,et al.  3-D Thermal-ADI: a linear-time chip level transient thermal simulator , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  A. G. Kokkas Thermal analysis of multiple-layer structures , 1974 .

[13]  Sung-Mo Kang,et al.  Cell-level placement for improving substrate thermal distribution , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..