On the identification of the optimal partition for semidefinite optimization
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[3] Yinyu Ye,et al. Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming , 1994, Math. Oper. Res..
[4] J. Frédéric Bonnans,et al. Perturbation analysis of second-order cone programming problems , 2005, Math. Program..
[5] Zhi-Quan Luo,et al. Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..
[6] C. Roos,et al. Infeasible Start Semidefinite Programming Algorithms Via Self-Dual Embeddings , 1997 .
[7] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[8] C. Roos,et al. Interior Point Methods for Linear Optimization , 2005 .
[9] Motakuri V. Ramana,et al. An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..
[10] E. Yildirim,et al. Unifying Optimal Partition Approach to Sensitivity Analysis in Conic Optimization , 2004 .
[11] Jiming Peng,et al. A Strongly Polynomial Rounding Procedure Yielding a Maximally Complementary Solution for P*(kappa) Linear Complementarity Problems , 2000, SIAM J. Optim..
[12] Eun-Young Lee. Extension of Rotfel’d Theorem , 2011 .
[13] A. Hoffman. On approximate solutions of systems of linear inequalities , 1952 .
[14] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[15] Margaréta Halická,et al. Analyticity of the central path at the boundary point in semidefinite programming , 2002, Eur. J. Oper. Res..
[16] Tamás Terlaky,et al. On the Identification of the Optimal Partition of Second Order Cone Optimization Problems , 2014, SIAM J. Optim..
[17] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[18] Douglass J. Wilde,et al. Foundations of Optimization. , 1967 .
[19] Jos F. Sturm,et al. Error Bounds for Linear Matrix Inequalities , 1999, SIAM J. Optim..
[20] C. E. M. Pearce,et al. Some New Bounds for Singular Values and Eigenvalues of Matrix Products , 2000, Ann. Oper. Res..
[21] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[22] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[23] Tamás Terlaky,et al. A rounding procedure for semidefinite optimization , 2019, Oper. Res. Lett..
[24] Kees Roos,et al. Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..
[25] Jong-Shi Pang,et al. Error bounds in mathematical programming , 1997, Math. Program..
[26] Etienne de Klerk,et al. Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..
[27] Zhi-Quan Luo,et al. Error bounds for analytic systems and their applications , 1994, Math. Program..
[28] Zhi-Quan Luo,et al. Extension of Hoffman's Error Bound to Polynomial Systems , 1994, SIAM J. Optim..
[29] Katya Scheinberg,et al. Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..
[30] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[31] D. Goldfarb,et al. On parametric semidefinite programming , 1999 .
[32] Simon P. Schurr,et al. Preprocessing and Regularization for Degenerate Semidefinite Programs , 2013 .
[33] Javier Peña,et al. A complementarity partition theorem for multifold conic systems , 2011, Math. Program..
[34] Christodoulos A. Floudas. Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.
[35] Florian Jarre. Convex Analysis on Symmetric Matrices , 2000 .
[36] Yuen-Lam Cheung. Preprocessing and Reduction for Semidefinite Programming via Facial Reduction: Theory and Practice , 2013 .
[37] G. Pataki. Strong Duality in Conic Linear Programming: Facial Reduction and Extended Duals , 2013, 1301.7717.
[38] M. Ramana. An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .
[39] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[40] Yinyu Ye,et al. On the finite convergence of interior-point algorithms for linear programming , 1992, Math. Program..
[41] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[42] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[43] Danna Zhou,et al. d. , 1934, Microbial pathogenesis.