On the identification of the optimal partition for semidefinite optimization

Abstract The concept of the optimal partition was originally introduced for linear optimization and linear complementarity problems and subsequently extended to semidefinite optimization. For linear optimization and sufficient linear complementarity problems, from a central solution sufficiently close to the optimal set, the optimal partition and a maximally complementary optimal solution can be identified in strongly polynomial time. In this paper, we consider the identification of the optimal partition of semidefinite optimization, for which we provide an approximation from a bounded sequence of solutions on, or in a neighborhood of the central path. Using bounds on the magnitude of the eigenvalues, we identify the subsets of eigenvectors of the interior solutions whose accumulation points are orthonormal bases for the subspaces of the optimal partition. The magnitude of the eigenvalues of an interior solution is quantified using a condition number and an upper bound on the distance of an interior solution to the optimal set. We provide a measure of proximity of the approximation obtained from the central solutions to the true optimal partition of the problem.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[3]  Yinyu Ye,et al.  Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming , 1994, Math. Oper. Res..

[4]  J. Frédéric Bonnans,et al.  Perturbation analysis of second-order cone programming problems , 2005, Math. Program..

[5]  Zhi-Quan Luo,et al.  Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[6]  C. Roos,et al.  Infeasible Start Semidefinite Programming Algorithms Via Self-Dual Embeddings , 1997 .

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  C. Roos,et al.  Interior Point Methods for Linear Optimization , 2005 .

[9]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[10]  E. Yildirim,et al.  Unifying Optimal Partition Approach to Sensitivity Analysis in Conic Optimization , 2004 .

[11]  Jiming Peng,et al.  A Strongly Polynomial Rounding Procedure Yielding a Maximally Complementary Solution for P*(kappa) Linear Complementarity Problems , 2000, SIAM J. Optim..

[12]  Eun-Young Lee Extension of Rotfel’d Theorem , 2011 .

[13]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[14]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[15]  Margaréta Halická,et al.  Analyticity of the central path at the boundary point in semidefinite programming , 2002, Eur. J. Oper. Res..

[16]  Tamás Terlaky,et al.  On the Identification of the Optimal Partition of Second Order Cone Optimization Problems , 2014, SIAM J. Optim..

[17]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[18]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[19]  Jos F. Sturm,et al.  Error Bounds for Linear Matrix Inequalities , 1999, SIAM J. Optim..

[20]  C. E. M. Pearce,et al.  Some New Bounds for Singular Values and Eigenvalues of Matrix Products , 2000, Ann. Oper. Res..

[21]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[22]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[23]  Tamás Terlaky,et al.  A rounding procedure for semidefinite optimization , 2019, Oper. Res. Lett..

[24]  Kees Roos,et al.  Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..

[25]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[26]  Etienne de Klerk,et al.  Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..

[27]  Zhi-Quan Luo,et al.  Error bounds for analytic systems and their applications , 1994, Math. Program..

[28]  Zhi-Quan Luo,et al.  Extension of Hoffman's Error Bound to Polynomial Systems , 1994, SIAM J. Optim..

[29]  Katya Scheinberg,et al.  Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..

[30]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[31]  D. Goldfarb,et al.  On parametric semidefinite programming , 1999 .

[32]  Simon P. Schurr,et al.  Preprocessing and Regularization for Degenerate Semidefinite Programs , 2013 .

[33]  Javier Peña,et al.  A complementarity partition theorem for multifold conic systems , 2011, Math. Program..

[34]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[35]  Florian Jarre Convex Analysis on Symmetric Matrices , 2000 .

[36]  Yuen-Lam Cheung Preprocessing and Reduction for Semidefinite Programming via Facial Reduction: Theory and Practice , 2013 .

[37]  G. Pataki Strong Duality in Conic Linear Programming: Facial Reduction and Extended Duals , 2013, 1301.7717.

[38]  M. Ramana An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .

[39]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[40]  Yinyu Ye,et al.  On the finite convergence of interior-point algorithms for linear programming , 1992, Math. Program..

[41]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[42]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[43]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.