Numerical multistep methods for the efficient solution of quantum mechanics and related problems

Abstract In this paper we present the recent development in the numerical integration of the Schrodinger equation and related systems of ordinary differential equations with oscillatory solutions, such as the N-body problem. We examine several types of multistep methods (explicit, implicit, predictor–corrector, hybrid) and several properties (P-stability, trigonometric fitting of various orders, phase fitting, high phase-lag order, algebraic order). We analyze the local truncation error and the stability of the methods. The error for the Schrodinger equation is also presented, which reveals the relation of the error to the energy. The efficiency of the methods is evaluated through the integration of five problems. Figures are presented and analyzed and some general conclusions are made. Code written in Maple is given for the development of all methods analyzed in this paper. Also the subroutines written in Matlab, that concern the integration of the methods, are presented.

[1]  An extended numerov-type method for the numerical solution of the Schrödinger equation , 1997 .

[2]  Theodore E. Simos Dissipative High Phase-lag Order Numerov-type Methods for the Numerical Solution of the Schrödinger Equation , 1999, Comput. Chem..

[3]  T. E. Simos,et al.  A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation , 2003 .

[4]  S. Thompson,et al.  Solving ODEs and DDEs with Impulses 1 , 2008 .

[6]  Allan Wittkopf Automatic Code Generation and Optimization in Maple 1 , 2008 .

[7]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[8]  Theodore E. Simos,et al.  Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.

[9]  A. D. Raptis,et al.  Two-step methods for the numerical solution of the Schrödinger equation , 1982, Computing.

[10]  An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems☆ , 2003 .

[11]  Tom E. Simos,et al.  Trigonometrically-fitted partitioned multistep methods for the integration of orbital problems , 2004 .

[12]  Raymond J. Spiteri,et al.  PythNon : A PSE for the Numerical Solution of Nonlinear Algebraic Equations , 2008 .

[13]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[14]  Theodore E. Simos,et al.  Two-Step P-stable Methods with Phase-Lag of Order Infinity for the Numerical Solution of Special Second Order Initial Value Problems , 1996, WNAA.

[15]  Theodore E. Simos,et al.  New Insights in the Development of Numerov-type Methods with Minimal Phase-lag for the Numerical Solution of the Schrödinger Equation , 2001, Comput. Chem..

[16]  G. A. Panopoulos,et al.  Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrodinger Equation and Related Problems , 2008 .

[17]  G. Vanden Berghe,et al.  Exponentially-fitted Numerov methods , 2007 .

[18]  Donato Trigiante,et al.  Discrete Conservative Vector Fields Induced by the Trapezoidal Method , 2006 .

[19]  T. E. Simos Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .

[20]  T. E. Simos,et al.  A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation , 1999 .

[21]  Tom E. Simos,et al.  An accurate finite difference method for the numerical solution of the Schro¨dinger equation , 1998 .

[22]  Jesús Vigo-Aguiar,et al.  An exponentially-fitted high order method for long-term integration of periodic initial-value problems , 2001 .

[23]  Tom E. Simos,et al.  A new family of exponentially fitted methods , 2003 .

[24]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[25]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[26]  Georgios Psihoyios,et al.  Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially‐fitted Schemes , 2004 .

[27]  Alessandra Sestini,et al.  BS Linear Multistep Methods on Non-uniform Meshes , 2006 .

[28]  Guido Vanden Berghe,et al.  Exponentially-fitted Störmer/Verlet methods , 2006 .

[29]  Tom E. Simos,et al.  Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics , 2005 .

[30]  G. Psihoyios A Block Implicit Advanced Step-point (BIAS) Algorithm for Stiff Differential Systems , 2006 .

[31]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[32]  W. Enright On the use of ‘arc length’ and ‘defect’ for mesh selection for differential equations , 2005 .

[33]  T. E. Simos P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation , 2005 .

[34]  Zacharias A. Anastassi,et al.  An optimized Runge-Kutta method for the solution of orbital problems , 2005 .

[35]  Gerald D. Quinlan Resonances and instabilities in symmetric multistep methods , 1999 .

[36]  I. Gladwell,et al.  Numerical Solution of General Bordered ABD Linear Systems by Cyclic Reduction , 2006 .

[37]  M. Rizea,et al.  Comparison of some four-step methods for the numerical solution of the Schrödinger equation , 1985 .

[38]  Theodore E. Simos,et al.  A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation , 1999, Appl. Math. Comput..

[39]  Tom E. Simos,et al.  A P-stable hybrid exponentially-fitted method for the numerical integration of the Schrödinger equation , 2000 .

[40]  T. E. Simos A four-step method for the numerical solution of the Schro¨dinger equation , 1990 .

[41]  Warren Weckesser VFGEN : A Code Generation Tool , 2008 .

[42]  A new finite-difference method with minimal phase lag for the numerical solution of differential equations with engineering applications , 1999 .

[43]  A. D. Raptis,et al.  Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control , 1983 .

[44]  T. E. Simos Some New Four-Step Exponential-Fitting Methods for the Numerical Solution of the Radical Schrödinger Equation , 1991 .

[45]  H. De Meyer,et al.  Exponentially fitted variable two-step BDF algorithm for first order ODEs☆ , 2003 .

[46]  Tom E. Simos A family of four-step exponentially fitted predictor-corrector methods for the numerical integration of the Schro¨dinger equation , 1995 .

[47]  Tom E. Simos,et al.  A Numerov-type method for the numerical solution of the radial Schro¨dinger equation , 1991 .

[48]  T. E. Simos,et al.  A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation , 2005 .

[49]  Theodore E. Simos,et al.  Explicit exponentially fitted methods for the numerical solution of the Schrödinger equation , 1999, Appl. Math. Comput..

[50]  Tom E. Simos,et al.  An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems , 1994 .

[52]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[53]  H. Meyer,et al.  Modified backward differentiation methods of the Adams-type based on exponential interpolation , 1991 .

[54]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[55]  T. E. Simos Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .

[56]  Xinyuan Wu,et al.  A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions , 2008 .

[57]  T. Simos,et al.  A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution , 2009 .

[58]  Georgios Psihoyios,et al.  Trigonometrically fitted predictor: corrector methods for IVPs with oscillating solutions , 2003 .

[59]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[60]  T. E. Simos,et al.  An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation , 1999 .

[61]  Zacharias A. Anastassi,et al.  New Trigonometrically Fitted Six-Step Symmetric Methods for the Efficient Solution of the Schrodinger Equation , 2008 .

[62]  David Moore,et al.  On High Order MIRK Schemes and Hermite-Birkhoff Interpolants , 2006 .

[63]  Tom E. Simos,et al.  A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .

[64]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..

[65]  G. Psihoyios,et al.  Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods , 2004 .

[66]  L. Shampine,et al.  A BVP Solver that Controls Residual and Error 1 , 2008 .

[67]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[68]  T. E. Simos,et al.  A Family of P-stable Eighth Algebraic Order Methods with Exponential Fitting Facilities , 2001 .

[69]  P. S. Williams,et al.  Dissipative Exponentially-fitted Methods for the Numerical Solution of the Schrödinger Equation , 2001, Comput. Chem..

[70]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[71]  T. Simos A family of four-step trigonometrically-fitted methods and its application to the schrödinger equation , 2008 .

[72]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[73]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[74]  A. D. Raptis,et al.  A fourth-order Bessel fitting method for the numerical solution of the Schro¨dinger equation , 1992 .

[75]  T. E. Simos,et al.  A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation , 1998 .

[76]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[77]  Tom E. Simos A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation , 2001 .

[78]  T. E. Simos,et al.  A generator of high-order embedded P-stable methods for the numerical solution of the Schro¨dinger equation , 1996 .

[79]  Tom E. Simos,et al.  A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation , 1994 .

[80]  T. E. Simos AN EXPLICIT HIGH ORDER PREDICTOR-CORRECTOR METHOD FOR PERIODIC INITIAL VALUE PROBLEMS , 1995 .

[81]  Zacharoula Kalogiratou,et al.  Newton--Cotes formulae for long-time integration , 2003 .

[82]  Donato Trigiante,et al.  Stability Analysis of Linear Multistep Methods via Polynomial Type Variation 1 , 2007 .

[83]  T. Simos Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems☆ , 1993 .

[84]  Zacharias A. Anastassi,et al.  A Six-Step P-stable Trigonometrically-Fitted Method for the Numerical Integration of the Radial Schrodinger Equation , 2008 .

[85]  T. E. Simos Runge-Kutta interpolants with minimal phase-lag☆ , 1993 .

[86]  John E. Osborn,et al.  The SCHOL Project at the University of Maryland : Using Mathematical Software in the Teaching of Sophomore Differential Equations , 2008 .

[87]  G. Avdelas,et al.  New P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation , 2001 .

[88]  Hans Van de Vyver,et al.  An explicit Numerov-type method for second-order differential equations with oscillating solutions , 2007, Comput. Math. Appl..

[89]  T. E. Simos,et al.  Embedded methods for the numerical solution of the Schrödinger equation , 1996 .

[90]  T. E. Simos,et al.  A Family of Multistep Methods with Zero Phase-Lag and Derivatives for the Numerical Integration of Oscillatory ODEs , 2008, 0807.2929.

[91]  T. E. Simos,et al.  P-stable Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1999 .

[92]  Theodore E. Simos,et al.  Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..

[93]  Theodore E. Simos A trigonometrically-fitted method for long-time integration of orbital problems , 2004, Math. Comput. Model..

[94]  Theodore E. Simos Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution , 2004, Appl. Math. Lett..

[95]  Tom E. Simos Exponentially-fitted and trigonometrically-fitted symmetric linear multistep methods for the numerical integration of orbital problems , 2003 .

[96]  Mike Dewar Embedding a General-Purpose Numerical Library in an Interactive Environment , 2008 .

[97]  Ch. Tsitouras,et al.  Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .

[98]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[99]  Tom E. Simos Exponentially-fitted and trigonometrically-fitted methods for long-term integration of orbital problems , 2002 .

[100]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[101]  Hans Van de Vyver Phase-fitted and amplification-fitted two-step hybrid methods for y˝= f ( x,y ) , 2007 .

[102]  T. E. Simos,et al.  A four-step exponentially fitted method for the numerical solution of the Schrödinger equation , 2006 .

[103]  Jesús Vigo-Aguiar,et al.  A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems , 2003 .

[104]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[105]  T. E. Simos,et al.  A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .

[106]  Jeff Cash,et al.  Lobatto-Obrechkoff Formulae for 2nd Order Two-Point Boundary Value Problems , 2006 .

[107]  Theodore E. Simos,et al.  Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrödinger equation , 2005, Math. Comput. Model..

[108]  Hans Van de Vyver An adapted explicit hybrid method of Numerov-type for the numerical integration of perturbed oscillators , 2007, Appl. Math. Comput..

[109]  Zhongcheng Wang P-stable linear symmetric multistep methods for periodic initial-value problems , 2005, Comput. Phys. Commun..

[110]  Theodore E. Simos,et al.  A P-stable exponentially fitted method for the numerical integration of the Schrödinger equation , 2000, Appl. Math. Comput..

[111]  T. E. Simos,et al.  A two-step method for the numerical solution of the radial Schrödinger equation , 1995 .

[112]  Francesca Mazzia,et al.  Hybrid Mesh Selection Algorithms Based on Conditioning for Two-Point Boundary Value Problems , 2006 .

[113]  Donato Trigiante,et al.  Stability and Conditioning in Numerical Analysis , 2006 .

[114]  Tom E. Simos Dissipative trigonometrically fitted methods for the numerical solution of orbital problems , 2004 .

[115]  D. P. Sakas,et al.  Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation , 2005 .

[116]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[117]  Tom E. Simos A new variable-step method for the numerical integration of special second-order initial value problems and their application to the one-dimensional Schrödinger equation , 1993 .

[118]  Theodore E. Simos,et al.  Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation , 2005, Computing.

[120]  T. E. Simos,et al.  A method for computing phase shifts for scattering , 1990 .

[121]  Tom E. Simos,et al.  Eighth-order methods for elastic scattering phase shifts , 1997 .

[122]  Theodore E. Simos,et al.  A new trigonometrically-fitted sixth algebraic order P-C algorithm for the numerical solution of the radial schrödinger equation , 2005, Math. Comput. Model..

[123]  T. Monovasilis,et al.  Symplectic integrators for the numerical solution of the Schrödinger equation , 2003 .

[124]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[125]  T. E. Simos A high order predictor-corrector method for periodic IVPS , 1993 .

[126]  T. E. Simos Exponentially-fitted and trigonometrically-fitted methods for the numerical solution of orbital problems , 2003 .

[127]  T. E. Simos,et al.  A new method for the numerical solution of fourth-order BVP's with oscillating solutions , 1996 .

[128]  Novriana Sumarti,et al.  The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems , 2006 .

[129]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[130]  Lawrence F. Shampine,et al.  A User-Friendly Fortran BVP Solver , 2006 .

[131]  Tom E. Simos,et al.  A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution , 1993 .

[133]  J. Cash,et al.  Variable Step Runge-Kutta-Nystrom Methods for the Numerical Solution of Reversible Systems , 2006 .

[134]  Georgios Psihoyios,et al.  A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions , 2005 .

[135]  Georgios Psihoyios,et al.  Trigonometrically-fitted symmetric multistep methods for the approximate solution of orbital problems , 2003 .

[136]  Theodore E. Simos,et al.  A Family of Numerov-type Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1997, Comput. Chem..