Non-compact gaugings from higher dimensions
暂无分享,去创建一个
[1] H. Nicolai,et al. The consistency of the S7 truncation in d=11 supergravity , 1987 .
[2] H. Nicolai,et al. d = 11 supergravity with local SU(8) invariance , 1986 .
[3] L. Romans,et al. Compact and non-compact gauged supergravity theories in five dimensions , 1986 .
[4] L. Romans,et al. IIB, or not IIB: That is the question , 1985 .
[5] D. Hinks,et al. Calorimetric studies of single crystals of ErRh4B4 , 1985 .
[6] P. Nieuwenhuizen,et al. Gauged N=8 D=5 Supergravity , 1985 .
[7] M. Pernici. Spontaneous compactification of seven-dimensional supergravity theories , 1985 .
[8] Kim,et al. Mass spectrum of chiral ten-dimensional N=2 supergravity on S5. , 1985, Physical review. D, Particles and fields.
[9] H. Nicolai,et al. Hidden symmetry in d = 11 supergravity , 1985 .
[10] B. Nilsson. On the embedding of d = 4, N = 8 gauged supergravity in d = 11, N = 1 supergravity , 1985 .
[11] L. Romans,et al. Gauged N = 8 supergravity in five dimensions☆ , 1985 .
[12] C. Hull. The minimal couplings and scalar potentials of the gauged N=8 supergravities , 1985 .
[13] P. Nieuwenhuizen,et al. New compactifications of ten and eleven dimensional supergravity on manifolds which are not direct products , 1985 .
[14] P. Nieuwenhuizen,et al. Noncompact gaugings and critical points of maximal supergravity in seven dimensions , 1985 .
[15] H. Nicolai,et al. A new SO(7) invariant solution of d = 11 supergravity , 1984 .
[16] M. Gell-Mann,et al. Curling up two spatial dimensions with SU(1,1)/U(1) , 1984 .
[17] H. Nicolai,et al. On the relation between d = 4 and d = 11 supergravity , 1984 .
[18] C. Hull. A New Gauging of $N=8$ Supergravity , 1984 .
[19] P. Nieuwenhuizen,et al. Compactification of d = 11 supergravity on S4 (or 11 = 7 + 4, too) , 1984 .
[20] C. Wetterich. Dimensional reduction of fermions in generalized gravity , 1984 .
[21] P. Nieuwenhuizen,et al. Gauged maximally extended su - pergravity in seven dimensions , 1984 .
[22] C. Hull. The spontaneous breaking of supersymmetry in curved space-time , 1984 .
[23] M. Gell-Mann,et al. Spacetime compactification induced by scalars , 1984 .
[24] G. Gibbons,et al. Electrovac ground state in gauged SU(2) × SU(2) supergravity , 1984 .
[25] M. Duff. Supergravity, the seven-sphere, and spontaneous symmetry breaking , 1983 .
[26] G. Gibbons,et al. The stability of gauged supergravity , 1983 .
[27] D. Freedman,et al. Stability in Gauged Extended Supergravity , 1982 .
[28] H. Nicolai,et al. N = 8 supergravity , 1982 .
[29] D. Freedman,et al. Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity , 1982 .
[30] L. Abbott,et al. Stability of gravity with a cosmological constant , 1982 .
[31] E. Witten. A new proof of the positive energy theorem , 1981 .
[32] E. Cremmer,et al. The SO(8) supergravity , 1979 .
[33] M. Grisaru. Positivity of the energy in Einstein theory , 1978 .
[34] S. Deser,et al. Supergravity Has Positive Energy , 1977 .
[35] P. Goddard,et al. A New Method of Incorporating Symmetry into Superstring Theory , 1987 .
[36] B. Nilsson,et al. Kaluza-Klein Supergravity , 1986 .
[37] H. Nicolai,et al. The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .
[38] N. Warner,et al. The structure of the gauged N = 8 supergravity theories , 1985 .
[39] N. Warner,et al. The potentials of the gauged N = 8 supergravity theories , 1985 .