Non-compact gaugings from higher dimensions

The N=8 supergravity theories in four (and five) dimensions with non-compact gauge groups are obtained from eleven- (and ten-) dimensional supergravities in backgrounds with non-compact internal spaces. The SO(p,q) gaugings are obtained by a consistent truncation of the higher-dimensional supergravity in a background that is a warped product of a four- (or five-) dimensional Einstein space with the hyperboloid Hp,q (i.e. the surface (z1)2+. . .+(zp)2-(zp+1)2-. . . -(zp+q)2=r2). For the non-semisimple CSO (p,q,r) gaugings Hp,q is replaced by the 'cylinder' Hp,q*Rr. These backgrounds are solutions of the higher-dimensional field equations precisely when the lower-dimensional supergravity has a SO(p)*SO(q) invariant vacuum solution. The mode analysis and massive spectra in these backgrounds are briefly considered.

[1]  H. Nicolai,et al.  The consistency of the S7 truncation in d=11 supergravity , 1987 .

[2]  H. Nicolai,et al.  d = 11 supergravity with local SU(8) invariance , 1986 .

[3]  L. Romans,et al.  Compact and non-compact gauged supergravity theories in five dimensions , 1986 .

[4]  L. Romans,et al.  IIB, or not IIB: That is the question , 1985 .

[5]  D. Hinks,et al.  Calorimetric studies of single crystals of ErRh4B4 , 1985 .

[6]  P. Nieuwenhuizen,et al.  Gauged N=8 D=5 Supergravity , 1985 .

[7]  M. Pernici Spontaneous compactification of seven-dimensional supergravity theories , 1985 .

[8]  Kim,et al.  Mass spectrum of chiral ten-dimensional N=2 supergravity on S5. , 1985, Physical review. D, Particles and fields.

[9]  H. Nicolai,et al.  Hidden symmetry in d = 11 supergravity , 1985 .

[10]  B. Nilsson On the embedding of d = 4, N = 8 gauged supergravity in d = 11, N = 1 supergravity , 1985 .

[11]  L. Romans,et al.  Gauged N = 8 supergravity in five dimensions☆ , 1985 .

[12]  C. Hull The minimal couplings and scalar potentials of the gauged N=8 supergravities , 1985 .

[13]  P. Nieuwenhuizen,et al.  New compactifications of ten and eleven dimensional supergravity on manifolds which are not direct products , 1985 .

[14]  P. Nieuwenhuizen,et al.  Noncompact gaugings and critical points of maximal supergravity in seven dimensions , 1985 .

[15]  H. Nicolai,et al.  A new SO(7) invariant solution of d = 11 supergravity , 1984 .

[16]  M. Gell-Mann,et al.  Curling up two spatial dimensions with SU(1,1)/U(1) , 1984 .

[17]  H. Nicolai,et al.  On the relation between d = 4 and d = 11 supergravity , 1984 .

[18]  C. Hull A New Gauging of $N=8$ Supergravity , 1984 .

[19]  P. Nieuwenhuizen,et al.  Compactification of d = 11 supergravity on S4 (or 11 = 7 + 4, too) , 1984 .

[20]  C. Wetterich Dimensional reduction of fermions in generalized gravity , 1984 .

[21]  P. Nieuwenhuizen,et al.  Gauged maximally extended su - pergravity in seven dimensions , 1984 .

[22]  C. Hull The spontaneous breaking of supersymmetry in curved space-time , 1984 .

[23]  M. Gell-Mann,et al.  Spacetime compactification induced by scalars , 1984 .

[24]  G. Gibbons,et al.  Electrovac ground state in gauged SU(2) × SU(2) supergravity , 1984 .

[25]  M. Duff Supergravity, the seven-sphere, and spontaneous symmetry breaking , 1983 .

[26]  G. Gibbons,et al.  The stability of gauged supergravity , 1983 .

[27]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[28]  H. Nicolai,et al.  N = 8 supergravity , 1982 .

[29]  D. Freedman,et al.  Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity , 1982 .

[30]  L. Abbott,et al.  Stability of gravity with a cosmological constant , 1982 .

[31]  E. Witten A new proof of the positive energy theorem , 1981 .

[32]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[33]  M. Grisaru Positivity of the energy in Einstein theory , 1978 .

[34]  S. Deser,et al.  Supergravity Has Positive Energy , 1977 .

[35]  P. Goddard,et al.  A New Method of Incorporating Symmetry into Superstring Theory , 1987 .

[36]  B. Nilsson,et al.  Kaluza-Klein Supergravity , 1986 .

[37]  H. Nicolai,et al.  The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .

[38]  N. Warner,et al.  The structure of the gauged N = 8 supergravity theories , 1985 .

[39]  N. Warner,et al.  The potentials of the gauged N = 8 supergravity theories , 1985 .