Localizing the Delaunay Triangulation and its Parallel Implementation

We show how to localize the Delaunay triangulation of a given planar point set, namely, bound the set of points which are possible Delaunay neighbors of a given point. We then exploit this observation in an algorithm for constructing the Delaunay triangulation (and its dual Voronoi diagram) by computing the Delaunay neighbors (and Voronoi cell) of each point independently. While this does not lead to the fastest serial algorithm possible for Delaunay triangulation, it does lead to an efficient parallelization strategy which achieves almost perfect speedups on multicore machines.

[1]  Daniel Reem,et al.  An Algorithm for Computing Voronoi Diagrams of General Generators in General Normed Spaces , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[2]  Otfried Schwarzkopf Parallel Computation of Discrete Voronoi Diagrams (Extended Abstract) , 1989 .

[3]  Tiow Seng Tan,et al.  Computing 2D Constrained Delaunay Triangulation Using the GPU , 2013, IEEE Transactions on Visualization and Computer Graphics.

[4]  Alper Üngör,et al.  Parallel Delaunay Refinement: Algorithms and Analyses , 2002, Int. J. Comput. Geom. Appl..

[5]  Joseph S. Szakas,et al.  Parallel algorithms to find the Voronoi diagram and the order-k Voronoi diagram , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[6]  C. Barber Computational geometry with imprecise data and arithmetic , 1992 .

[7]  R. Scopigno,et al.  Parallel 3D Delaunay Triangulation , 1993, Comput. Graph. Forum.

[8]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[9]  Guy E. Blelloch,et al.  Design and Implementation of a Practical Parallel Delaunay Algorithm , 1999, Algorithmica.

[10]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[11]  Nancy M. Amato,et al.  Parallel algorithms for higher-dimensional convex hulls , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[12]  Ivana Kolingerová,et al.  Parallel Delaunay triangulation based on circum-circle criterion , 2003, SCCG '03.

[13]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[14]  Henning Meyerhenke,et al.  Constructing higher-order Voronoi diagrams in parallel , 2005, EuroCG.

[15]  David Avis,et al.  A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..

[16]  Robert L. Scot Drysdale,et al.  A Comparison of Sequential Delaunay Triangulation Algorithms , 1997, Comput. Geom..

[17]  Guy E. Blelloch,et al.  Developing a practical projection-based parallel Delaunay algorithm , 1996, SCG '96.

[18]  Rex A. Dwyer A faster divide-and-conquer algorithm for constructing delaunay triangulations , 1987, Algorithmica.

[19]  Monique Teillaud,et al.  On the computation of 3d periodic triangulations , 2008, SCG '08.

[20]  Sangyoon Lee,et al.  An Efficient Parallel Algorithm for Delaunay Triangulation on Distributed Memory Parallel Computers , 1996, PDPTA.

[21]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[22]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[23]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[24]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[25]  Arne Maus,et al.  All closest neighbors are proper Delaunay edges generalized, and its application to parallel algorithms , 2010 .

[26]  Jonathan Richard Shewchuk,et al.  Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.

[27]  Tiow Seng Tan,et al.  Computing two-dimensional Delaunay triangulation using graphics hardware , 2008, I3D '08.

[28]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[29]  David G. Kirkpatrick,et al.  Parallel Construction of Subdivision Hierarchies , 1989, J. Comput. Syst. Sci..

[30]  R. Varadarajan,et al.  An efficient expected time parallel algorithm for Voronoi construction , 1992, SPAA '92.

[31]  Chan-Mo Park,et al.  AN IMPROVED PARALLEL ALGORITHM FOR DELAUNAY TRIANGULATION ON DISTRIBUTED MEMORY PARALLEL COMPUTERS , 2001 .

[32]  Arne Maus,et al.  Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.

[33]  John H. Reif,et al.  Erratum: Optimal Parallel Randomized Algorithms for Three-Dimensional Convex Hulls and Related Problems , 1994, SIAM J. Comput..

[34]  Sariel Har-Peled On the Expected Complexity of Random Convex Hulls , 2011, ArXiv.