Tailor-made Molecular Cobalt Catalyst System for the Selective Transformation of Carbon Dioxide to Dialkoxymethane Ethers.

Herein a non-precious transition-metal catalyst system for the selective synthesis of dialkoxymethane ethers from carbon dioxide and molecular hydrogen is presented. The development of a tailored catalyst system based on cobalt salts in combination with selected Triphos ligands and acidic co-catalysts enabled a synthetic pathway, avoiding the oxidation of methanol to attain the formaldehyde level of the central CH2 unit. This unprecedented productivity based on the molecular cobalt catalyst is the first example of a non-precious transition-metal system for this transformation utilizing renewable carbon dioxide sources.

[1]  W. Leitner,et al.  Activation of carbon dioxide: IV. Rhodium-catalysed hydrogenation of carbon dioxide to formic acid☆ , 1994 .

[2]  G. Huttner,et al.  1.13 – Phosphorus Tripodal Ligands , 2003 .

[3]  K. Morokuma,et al.  Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex , 2011 .

[4]  Chelsea A. Huff,et al.  Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. , 2011, Journal of the American Chemical Society.

[5]  W. Leitner Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten , 1995 .

[6]  E. Bielinski,et al.  Iron catalyzed CO2 hydrogenation to formate enhanced by Lewis acid co-catalysts , 2015, Chemical science.

[7]  M. Beller,et al.  Towards the development of a hydrogen battery , 2012 .

[8]  Jürgen Klankermayer,et al.  Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen. , 2016, Angewandte Chemie.

[9]  Walter Leitner,et al.  Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2 , 1995 .

[10]  W. Leitner,et al.  Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse‐Schach an der Nahtstelle zwischen Energie und Chemie , 2016 .

[11]  Jürgen Klankermayer,et al.  Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst , 2012 .

[12]  Michael T. Mock,et al.  A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. , 2013, Journal of the American Chemical Society.

[13]  A. Appel,et al.  A Molecular Copper Catalyst for Hydrogenation of CO2 to Formate , 2015 .

[14]  E. Bielinski,et al.  Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. , 2014, Journal of the American Chemical Society.

[15]  Jürgen Klankermayer,et al.  Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. , 2016, Angewandte Chemie.

[16]  M. Beller,et al.  Using carbon dioxide as a building block in organic synthesis , 2015, Nature Communications.

[17]  Nomaan M Rezayee,et al.  Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. , 2015, Journal of the American Chemical Society.

[18]  W. Leitner,et al.  Love at second sight for CO2 and H2 in organic synthesis , 2015, Science.

[19]  P. Dyson,et al.  Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media , 2014, Nature Communications.

[20]  B. de Bruin,et al.  Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst , 2015, Science.

[21]  M. Yamashita,et al.  Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. , 2009, Journal of the American Chemical Society.

[22]  Eberhard Jacob,et al.  OXYMETHYLENE ETHERS AS DIESEL FUEL ADDITIVES OF THE FUTURE , 2011 .

[23]  M. Beller,et al.  Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. , 2012, Chemistry.

[24]  M. Beller,et al.  Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. , 2017, Angewandte Chemie.

[25]  W. Leitner,et al.  Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. , 2012, Angewandte Chemie.

[26]  Y. Diskin‐Posner,et al.  Selective N-Formylation of Amines with H2 and CO2 Catalyzed by Cobalt Pincer Complexes , 2017 .

[27]  M. Beller,et al.  Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. , 2012, Journal of the American Chemical Society.

[28]  W. Leitner,et al.  Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water , 2016, Angewandte Chemie.

[29]  J. Burger,et al.  Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts , 2010 .

[30]  W. Leitner,et al.  Tailor-Made Ruthenium-Triphos Catalysts for the Selective Homogeneous Hydrogenation of Lactams. , 2016, Angewandte Chemie.

[31]  Jörg Sauer,et al.  Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers , 2016 .

[32]  P. Jessop,et al.  Homogeneous catalytic hydrogenation of supercritical carbon dioxide , 1994, Nature.

[33]  R. Scopelliti,et al.  A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. , 2010, Angewandte Chemie.

[34]  E. Hensen,et al.  Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP‐Pincer Catalyst , 2014 .

[35]  M. Beller,et al.  Ein wohldefinierter Eisenkatalysator für die Reduktion von Bicarbonaten und Kohlendioxid zu Formiaten, Alkylformiaten und Formamiden , 2010 .

[36]  Jakob Burger,et al.  Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth , 2013 .

[37]  Y. Diskin‐Posner,et al.  Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. , 2011, Angewandte Chemie.