Trap‐Dependent Optical/Thermal Stimulated Luminescence of Gallate Phosphors Charged by UV–visible–NIR light for Multiplexed Data Storage

[1]  Chuanlong Wang,et al.  Linear Charging-Discharging of an Ultralong Uva Persistent Phosphor for Advanced Optical Data Storage and Wide-Wavelength-Range Detector , 2022, SSRN Electronic Journal.

[2]  Sining Yun,et al.  Achieving opto-responsive multimode luminescence in Zn1+Ga2−2Ge O4:Mn persistent phosphors for advanced anti-counterfeiting and information encryption , 2022, Materials Today Physics.

[3]  Shin‐Tson Wu,et al.  Holo-imprinting polarization optics with a reflective liquid crystal hologram template , 2022, Light, science & applications.

[4]  Xudong Sun,et al.  Co-doping Mn2+/Cr3+ in ZnGa2O4 to fabricate chameleon-like phosphors for multi-mode dynamic anti-counterfeiting , 2021 .

[5]  C. Duan,et al.  Multiple-Valence and Visible to Near-Infrared Photoluminescence of Manganese in ZnGa2O4: A First-Principles Study , 2021, The Journal of Physical Chemistry C.

[6]  R. Xie,et al.  X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage , 2021, Light, science & applications.

[7]  J. Qiu,et al.  Thermal Engineering of Electron-Trapping materials for “Smart-Write-In” Optical Data Storage , 2021 .

[8]  Xiao-jun Wang,et al.  Effect of detrapping on up-conversion charging in LaMgGa11O19:Pr3+ persistent phosphor , 2021 .

[9]  J. Qiu,et al.  Trap Energy Upconversion‐Like Near‐Infrared to Near‐Infrared Light Rejuvenateable Persistent Luminescence , 2021, Advanced materials.

[10]  Yihua Hu,et al.  Optically Stimulated Luminescence Phosphors: Principles, Applications, and Prospects , 2020, Laser & Photonics Reviews.

[11]  Yongchao Jia,et al.  ZnGa2-yAlyO4:Mn2+,Mn4+ Thermochromic Phosphors: Valence State Control and Optical Temperature Sensing. , 2020, Inorganic chemistry.

[12]  Yichun Liu,et al.  Charging Gd3Ga5O12:Pr3+ persistent phosphor using blue lasers , 2020 .

[13]  Xusheng Wang,et al.  UV–Vis-NIR broadband-photostimulated luminescence of LiTaO3:Bi3+ long-persistent phosphor and the optical storage properties , 2020 .

[14]  Yao Cheng,et al.  High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence , 2020, Light: Science & Applications.

[15]  Yihua Hu,et al.  Tailoring multi-dimensional traps towards rewritable multi-level optical data storage. , 2019, ACS applied materials & interfaces.

[16]  J. Qiu,et al.  Recent developments and progress of inorganic photo-stimulated phosphors , 2019, Journal of Rare Earths.

[17]  Qingming Huang,et al.  Optical Storage: A Photostimulated BaSi 2 O 5 :Eu 2+ ,Nd 3+ Phosphor‐in‐Glass for Erasable‐Rewritable Optical Storage Medium (Laser Photonics Rev. 13(4)/2019) , 2019, Laser & Photonics reviews.

[18]  Yu-Jun Zhao,et al.  Role of intrinsic defects on the persistent luminescence of pristine and Mn doped ZnGa2O4 , 2019, Journal of Applied Physics.

[19]  Lifang Zhang,et al.  Density Functional Characterization of the 4f-Relevant Electronic Transitions of Lanthanide-Doped Lu2 O3 Luminescence Materials. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  R. Xie,et al.  Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep‐Trap Persistent Luminescence Materials , 2018 .

[21]  K. P. Abhilash,et al.  Defect luminescence and lattice strain in Mn2+ doped ZnGa2O4 , 2016 .

[22]  Kurt Lejaeghere,et al.  First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors. , 2016, Inorganic chemistry.

[23]  Jing Ren,et al.  Novel Self‐Activated Zinc Gallogermanate Phosphor: The Origin of its Photoluminescence , 2014 .

[24]  Min Gu,et al.  Optical storage arrays: a perspective for future big data storage , 2014, Light: Science & Applications.

[25]  Didier Gourier,et al.  Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate , 2014 .

[26]  Feng Liu,et al.  Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8 , 2013, Scientific Reports.

[27]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[28]  M. Snir,et al.  Big data, but are we ready? , 2011, Nature Reviews Genetics.

[29]  Zhengwei Pan,et al.  Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. , 2011, Nature materials.

[30]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[31]  S. Mho,et al.  Color variation of ZnGa2O4 phosphor by reduction-oxidation processes , 2003 .

[32]  H. Hosono,et al.  LONG LASTING PHOSPHORESCENCE AND PHOTOSTIMULATED LUMINESCENCE IN TB-ION-ACTIVATED REDUCED CALCIUM ALUMINATE GLASSES , 1999 .

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  Reuven Chen On the Calculation of Activation Energies and Frequency Factors from Glow Curves , 1969 .