A Posteriori Error Estimates of Spectral Approximations for Second Order Partial Differential Equations in Spherical Geometries

In this paper, we investigate a posteriori error estimates of the Galerkin spectral methods for second-order equations, and propose a simple type of error estimator comprising expansion coefficients of known quantities such as the right-hand term. We first show that the errors of the numerical solution of the Poisson equation on the unit ball in arbitrary dimensions can be identified by the approximation errors of the (weighted) $$L^2$$ L 2 -projection of the right-hand function together with the non-homogeneous boundary function. This result indicates that the decay rate of the high frequency coefficients of the right-hand term in weighted orthogonal ball polynomials and of the boundary term in spherical harmonics serves as an ideal a posteriori error estimator. In the sequel, we establish a posteriori error estimates on the Galerkin spectral method applied to the singular perturbation problem of a reaction–diffusion equation on the unit ball. Again, the efficiency is given by the approximation errors of the weighted $$L^2$$ L 2 -projection of the right-hand function; while the reliability is determined by the truncation errors of the right-hand function together with exponentially decaying multiples of the low frequency coefficients, which also reveals that the a posterior error estimator is dominated by the decay rate of the high frequency coefficients of the right-hand term. Finally, numerical examples are presented to illustrate the theoretical results.

[1]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[2]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[3]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[4]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[5]  Teresa E. Pérez,et al.  Weighted Sobolev orthogonal polynomials on the unit ball , 2013, J. Approx. Theory.

[6]  M. Bürg,et al.  A residual-based a posteriori error estimator for the hp-finite element method for Maxwell's equations , 2012 .

[7]  Jiayu Han,et al.  A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem , 2015 .

[8]  Stefan A. Sauter,et al.  A Posteriori Error Estimation of hp-dG Finite Element Methods for Highly Indefinite Helmholtz Problems , 2014, SIAM J. Numer. Anal..

[9]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[10]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[11]  Recent Progress on A-posteriori Error Analysis for the p and hp Finite Element Methods , 2005 .

[12]  O. C. Zienkiewicz,et al.  The background of error estimation and adaptivity in finite element computations , 2006 .

[13]  Yunqing Huang,et al.  A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations , 2008 .

[14]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[16]  Runchang Lin,et al.  A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems , 2012, SIAM J. Numer. Anal..

[17]  Eugenia Kálnay de Rivas On the use of nonuniform grids in finite-difference equations , 1972 .

[18]  Zhimin Zhang,et al.  Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .

[19]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[20]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[21]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[22]  Juan Zhang,et al.  The a posteriori error estimates of Chebyshev-Petrov-Galerkin methods for second-order equations , 2016, Appl. Math. Lett..

[23]  Danping Yang,et al.  An improved a posteriori error estimate for the Galerkin spectral method in one dimension , 2011, Comput. Math. Appl..

[24]  Yuan Xu,et al.  Spectral Approximation on the Unit Ball , 2013, SIAM J. Numer. Anal..

[25]  M Israeli,et al.  Numerical Simulation of Viscous Incompressible Flows , 1974 .