A Posteriori Error Estimates of Spectral Approximations for Second Order Partial Differential Equations in Spherical Geometries
暂无分享,去创建一个
[1] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[2] B. Guo,et al. Spectral Methods and Their Applications , 1998 .
[3] Yuan Xu,et al. Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .
[4] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[5] Teresa E. Pérez,et al. Weighted Sobolev orthogonal polynomials on the unit ball , 2013, J. Approx. Theory.
[6] M. Bürg,et al. A residual-based a posteriori error estimator for the hp-finite element method for Maxwell's equations , 2012 .
[7] Jiayu Han,et al. A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem , 2015 .
[8] Stefan A. Sauter,et al. A Posteriori Error Estimation of hp-dG Finite Element Methods for Highly Indefinite Helmholtz Problems , 2014, SIAM J. Numer. Anal..
[9] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[10] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[11] Recent Progress on A-posteriori Error Analysis for the p and hp Finite Element Methods , 2005 .
[12] O. C. Zienkiewicz,et al. The background of error estimation and adaptivity in finite element computations , 2006 .
[13] Yunqing Huang,et al. A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations , 2008 .
[14] Carsten Carstensen,et al. A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.
[16] Runchang Lin,et al. A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems , 2012, SIAM J. Numer. Anal..
[17] Eugenia Kálnay de Rivas. On the use of nonuniform grids in finite-difference equations , 1972 .
[18] Zhimin Zhang,et al. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .
[19] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[20] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[21] Nils-Erik Wiberg,et al. Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .
[22] Juan Zhang,et al. The a posteriori error estimates of Chebyshev-Petrov-Galerkin methods for second-order equations , 2016, Appl. Math. Lett..
[23] Danping Yang,et al. An improved a posteriori error estimate for the Galerkin spectral method in one dimension , 2011, Comput. Math. Appl..
[24] Yuan Xu,et al. Spectral Approximation on the Unit Ball , 2013, SIAM J. Numer. Anal..
[25] M Israeli,et al. Numerical Simulation of Viscous Incompressible Flows , 1974 .