Multi-physics optimization of three-dimensional microvascular polymeric components

This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.

[1]  A. Bejan,et al.  Constructal theory of generation of configuration in nature and engineering , 2006 .

[2]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[3]  Scott R. White,et al.  Characterization of Active Cooling and Flow Distribution in Microvascular Polymers , 2010 .

[4]  Bo Torstenfelt,et al.  Topology Optimization in Fluid Mechanics , 2002 .

[5]  Vilfredo Pareto,et al.  Manuale di economia politica , 1965 .

[6]  A. Bejan,et al.  Vascularization with trees that alternate with upside-down trees , 2007 .

[7]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[8]  A. Bejan,et al.  The constructal law and the evolution of design in nature. , 2011, Physics of life reviews.

[9]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[10]  J. Lewis,et al.  Self‐Healing Materials with Interpenetrating Microvascular Networks , 2009 .

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  J. Lewis,et al.  Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly , 2003, Nature materials.

[14]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[15]  Philippe H. Geubelle,et al.  Multi-physics design of microvascular materials for active cooling applications , 2011, J. Comput. Phys..

[16]  H. Fawcett Manual of Political Economy , 1995 .

[17]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[18]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[19]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[20]  J. Lewis,et al.  Omnidirectional Printing of 3D Microvascular Networks , 2011, Advanced materials.

[21]  Adrian Bejan,et al.  Design with constructal theory , 2008 .

[22]  Nancy R. Sottos,et al.  Hybrid Materials: Three‐Dimensional Microvascular Fiber‐Reinforced Composites (Adv. Mater. 32/2011) , 2011 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  D. Ouazar,et al.  Computational Hydraulics , 1983 .

[25]  C. Duarte,et al.  Generalized finite element enrichment functions for discontinuous gradient fields , 2010 .

[26]  Kenneth T. Christensen,et al.  Two-color laser-induced fluorescent thermometry for microfluidic systems , 2008 .

[27]  Adrian Bejan,et al.  Networks of channels for self-healing composite materials , 2006 .

[28]  Adrian Bejan,et al.  Vascularized materials: Tree-shaped flow architectures matched canopy to canopy , 2006 .

[29]  Martin F. Borthwick,et al.  Computational hydraulics , 2010, Hydraulics in Civil and Environmental Engineering.

[30]  David E. Goldberg,et al.  Design of microvascular flow networks using multi-objective genetic algorithms , 2008 .

[31]  Kenneth T. Christensen,et al.  Microscopic particle image velocimetry measurements of transition to turbulence in microscale capillaries , 2007 .

[32]  Anders Klarbring,et al.  Topology optimization of flow networks , 2003 .