Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

[1]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[2]  M. Debije,et al.  Progress in luminescent solar concentrator research: solar energy for the built environment , 2011 .

[3]  D. Son,et al.  Measurement of Energy Transfer Time in Colloidal Mn-Doped Semiconductor Nanocrystals , 2010 .

[4]  T. Willey,et al.  Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy , 2004 .

[5]  N. Pradhan,et al.  Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. , 2007, Nano letters.

[6]  Michael G Debije,et al.  Progress in phosphors and filters for luminescent solar concentrators. , 2012, Optics express.

[7]  Michael R. Wasielewski,et al.  Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators , 2011 .

[8]  J. S. Batchelder,et al.  Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. , 1981, Applied optics.

[9]  D. Patrick,et al.  Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators , 2014 .

[10]  Michael E. Thomas Optical propagation in linear media : atmospheric gases and particles, solid state components, and water , 2006 .

[11]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[12]  W. V. Sark,et al.  Tackling self-absorption in Luminescent Solar Concentrators with type-II colloidal quantum dots , 2012 .

[13]  B. Valeur,et al.  A photometric approach of fluorescent solar concentrators. Role of diffuse reflectors and spectral sensitivity of solar cells , 1987 .

[14]  Richard M. Swanson,et al.  The promise of concentrators , 2000 .

[15]  D. Gamelin,et al.  Nanocrystal diffusion doping. , 2013, Journal of the American Chemical Society.

[16]  J. Roncali,et al.  Photon-transport properties of luminescent solar concentrators: analysis and optimization. , 1984, Applied optics.

[17]  Michael G. Debije,et al.  Solar Energy Collectors with Tunable Transmission , 2010 .

[18]  Benedikt Bläsi,et al.  Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies , 2008 .

[19]  J. Boilot,et al.  Giant internal magnetic fields in Mn doped nanocrystal quantum dots , 2000 .

[20]  Neil Robertson,et al.  Characterization and reduction of reabsorption losses in luminescent solar concentrators. , 2010, Applied optics.

[21]  P. Borowicz,et al.  Non-self-absorbing materials for Luminescent Solar Concentrators (LSC) , 2010 .

[22]  F. Purcell-Milton,et al.  Quantum dots for Luminescent Solar Concentrators , 2012 .

[23]  Uwe Rau,et al.  Efficiency limits of photovoltaic fluorescent collectors , 2005 .

[24]  D. Patrick,et al.  Comprehensive analysis of escape-cone losses from luminescent waveguides. , 2013, Applied optics.

[25]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[26]  Roland Winston,et al.  The thermodynamic limits of light concentrators , 1990 .

[27]  Paul I. Archer,et al.  Luminescence in colloidal Mn2+-doped semiconductor nanocrystals , 2008 .

[28]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[29]  Nick S. Norberg,et al.  Colloidal transition-metal-doped ZnO quantum dots. , 2002, Journal of the American Chemical Society.

[30]  A. Bol,et al.  Long-livedMn2+emission in nanocrystallineZnS:Mn2+ , 1998 .

[31]  N. Yao,et al.  High-Quality Manganese-Doped ZnSe Nanocrystals , 2001 .

[32]  Peer Kirsch,et al.  Modern fluoroorganic chemistry , 2013 .

[33]  D. Gamelin,et al.  Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. , 2011, Journal of the American Chemical Society.

[34]  R. Ruffo,et al.  High Stokes shift perylene dyes for luminescent solar concentrators. , 2013, Chemical communications.

[35]  Michael G. Debije,et al.  Luminescent solar concentrators , 2010 .

[36]  A. Bol,et al.  LONG-LIVED MN2+ EMISSION IN NANOCRYSTALLINE ZNS:MN2+ , 1998 .

[37]  Paul I. Archer,et al.  Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. , 2008, Nano letters.

[38]  Paul I. Archer,et al.  Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots , 2009, Science.

[39]  A. Meijerink,et al.  Incorporation and luminescence of Yb3+ in CdSe nanocrystals. , 2013, Journal of the American Chemical Society.

[40]  Rowan W. MacQueen,et al.  Towards an aligned luminophore solar concentrator. , 2010, Optics express.

[41]  J. F. Suyver,et al.  Luminescence of nanocrystalline ZnSe:Mn2+ , 2000 .

[42]  Paul P. C. Verbunt,et al.  Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. , 2010, Applied optics.

[43]  N. Pradhan,et al.  Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters. , 2011, Angewandte Chemie.

[44]  Wei Huang,et al.  Enhancing Solar Cell Efficiency: The Search for Luminescent Materials as Spectral Converters , 2013 .

[45]  J. S. Batchelder,et al.  Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. , 1979, Applied optics.

[46]  A. Hauser,et al.  Luminescence Saturation via Mn2+–Exciton Cross Relaxation in Colloidal Doped Semiconductor Nanocrystals , 2012 .

[47]  Xiaogang Peng,et al.  Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. , 2009, Journal of the American Chemical Society.

[48]  Sheldon T. Bailey,et al.  Photo-stability and performance of CdSe/ZnS quantum dots in luminescent solar concentrators , 2009 .

[49]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[51]  Wilfried G. J. H. M. van Sark,et al.  Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model , 2013, Optics & Photonics - Solar Energy + Applications.

[52]  C. Ronda,et al.  Luminescence : from theory to applications , 2008 .

[53]  S. E. Irvine,et al.  Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. , 2008, Angewandte Chemie.

[54]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[55]  Kai Su,et al.  Siloxane materials for optical applications , 2006, International Commission for Optics.