Robust Optimality of Gaussian Noise Stability
暂无分享,去创建一个
[1] K. Arrow. A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.
[2] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[3] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[4] B. A. Taylor,et al. Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .
[5] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[6] C. Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .
[7] A. Ehrhard,et al. Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes , 1986 .
[8] W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[9] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .
[10] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[11] Sergey G. Bobkov,et al. A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .
[12] M. Ledoux,et al. Isoperimetry and Gaussian analysis , 1996 .
[13] M. Ledoux,et al. Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .
[14] Howard J. Karloff,et al. How good is the Goemans-Williamson MAX CUT algorithm? , 1996, STOC '96.
[15] M. Ledoux. The geometry of Markov diffusion generators , 1998 .
[16] I. Pinelis. Optimal Tail Comparison Based on Comparison of Moments , 1998 .
[17] I. Benjamini,et al. Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.
[18] Joanthan M. Tobis. “It ain't over till it's over” , 1999 .
[19] E. Carlen,et al. On the cases of equality in Bobkov's inequality and Gaussian rearrangement , 1999 .
[20] A. Burchard,et al. Comparison theorems for exit times , 2001 .
[21] M. Ledoux. The concentration of measure phenomenon , 2001 .
[22] Uriel Feige,et al. On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.
[23] Gil Kalai,et al. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..
[24] Subhash Khot. On the power of unique 2-prover 1-round games , 2002, STOC '02.
[25] Gil Kalai,et al. NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .
[26] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[27] Ryan O'Donnell,et al. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..
[28] Rocco A. Servedio,et al. Testing Halfspaces , 2007, SIAM J. Comput..
[29] Elchanan Mossel,et al. Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.
[30] Per Austrin. Towards Sharp Inapproximability For Any 2-CSP , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[31] Prasad Raghavendra,et al. Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.
[32] Elchanan Mossel,et al. Maximally stable Gaussian partitions with discrete applications , 2009, 0903.3362.
[33] Elchanan Mossel,et al. Conditional Hardness for Approximate Coloring , 2009, SIAM J. Comput..
[34] Daniel M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions , 2010, Computational Complexity Conference.
[35] Bo'az Klartag,et al. Quantum one-way communication can be exponentially stronger than classical communication , 2011, STOC '11.
[36] N. Fusco,et al. On the isoperimetric deficit in Gauss space , 2011 .
[37] Elchanan Mossel,et al. Robust dimension free isoperimetry in Gaussian space , 2012, 1202.4124.
[38] T. Sanders,et al. Analysis of Boolean Functions , 2012, ArXiv.
[39] Ryan O'Donnell,et al. Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.
[40] Elchanan Mossel,et al. Majority is stablest: discrete and SoS , 2012, STOC '13.