Robust Optimality of Gaussian Noise Stability

We prove that under the Gaussian measure, half-spaces are uniquely the most noise stable sets. We also prove a quantitative version of uniqueness, showing that a set which is almost optimally noise stable must be close to a half-space. This extends a theorem of Borell, who proved the same result but without uniqueness, and it also answers a question of Ledoux, who asked whether it was possible to prove Borell's theorem using a direct semigroup argument. Our quantitative uniqueness result has various applications in diverse fields.

[1]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[2]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[3]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[4]  B. A. Taylor,et al.  Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .

[5]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[6]  C. Borell Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .

[7]  A. Ehrhard,et al.  Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes , 1986 .

[8]  W. Beckner Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Ledoux Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .

[10]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[11]  Sergey G. Bobkov,et al.  A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .

[12]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[13]  M. Ledoux,et al.  Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .

[14]  Howard J. Karloff,et al.  How good is the Goemans-Williamson MAX CUT algorithm? , 1996, STOC '96.

[15]  M. Ledoux The geometry of Markov diffusion generators , 1998 .

[16]  I. Pinelis Optimal Tail Comparison Based on Comparison of Moments , 1998 .

[17]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.

[18]  Joanthan M. Tobis “It ain't over till it's over” , 1999 .

[19]  E. Carlen,et al.  On the cases of equality in Bobkov's inequality and Gaussian rearrangement , 1999 .

[20]  A. Burchard,et al.  Comparison theorems for exit times , 2001 .

[21]  M. Ledoux The concentration of measure phenomenon , 2001 .

[22]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[23]  Gil Kalai,et al.  A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..

[24]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[25]  Gil Kalai,et al.  NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .

[26]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[27]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[28]  Rocco A. Servedio,et al.  Testing Halfspaces , 2007, SIAM J. Comput..

[29]  Elchanan Mossel,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.

[30]  Per Austrin Towards Sharp Inapproximability For Any 2-CSP , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[31]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[32]  Elchanan Mossel,et al.  Maximally stable Gaussian partitions with discrete applications , 2009, 0903.3362.

[33]  Elchanan Mossel,et al.  Conditional Hardness for Approximate Coloring , 2009, SIAM J. Comput..

[34]  Daniel M. Kane The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions , 2010, Computational Complexity Conference.

[35]  Bo'az Klartag,et al.  Quantum one-way communication can be exponentially stronger than classical communication , 2011, STOC '11.

[36]  N. Fusco,et al.  On the isoperimetric deficit in Gauss space , 2011 .

[37]  Elchanan Mossel,et al.  Robust dimension free isoperimetry in Gaussian space , 2012, 1202.4124.

[38]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[39]  Ryan O'Donnell,et al.  Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[40]  Elchanan Mossel,et al.  Majority is stablest: discrete and SoS , 2012, STOC '13.