Reconfiguration over Tree Decompositions

A vertex-subset graph problem $Q$ defines which subsets of the vertices of an input graph are feasible solutions. The reconfiguration version of a vertex-subset problem $Q$ asks whether it is possible to transform one feasible solution for $Q$ into another in at most $\ell$ steps, where each step is a vertex addition or deletion, and each intermediate set is also a feasible solution for $Q$ of size bounded by $k$. Motivated by recent results establishing W[1]-hardness of the reconfiguration versions of most vertex-subset problems parameterized by $\ell$, we investigate the complexity of such problems restricted to graphs of bounded treewidth. We show that the reconfiguration versions of most vertex-subset problems remain PSPACE-complete on graphs of treewidth at most $t$ but are fixed-parameter tractable parameterized by $\ell + t$ for all vertex-subset problems definable in monadic second-order logic (MSOL). To prove the latter result, we introduce a technique which allows us to circumvent cardinality constraints and define reconfiguration problems in MSOL.

[1]  Martin Grohe,et al.  Logic, graphs, and algorithms , 2007, Logic and Automata.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Takehiro Ito,et al.  Reconfiguration of list edge-colorings in a graph , 2012, Discret. Appl. Math..

[4]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[5]  Paul S. Bonsma,et al.  The complexity of rerouting shortest paths , 2010, Theor. Comput. Sci..

[6]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[9]  Martin Milanic,et al.  Shortest paths between shortest paths , 2011, Theor. Comput. Sci..

[10]  Bruce A. Reed,et al.  Planar graph bipartization in linear time , 2005, Discret. Appl. Math..

[11]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[12]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[13]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[14]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[15]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[16]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[18]  Takehiro Ito,et al.  On the complexity of reconfiguration problems , 2008, Theor. Comput. Sci..

[19]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[20]  Jan van den Heuvel,et al.  Connectedness of the graph of vertex-colourings , 2008, Discret. Math..

[21]  Naomi Nishimura,et al.  On the Parameterized Complexity of Reconfiguration Problems , 2013, Algorithmica.

[22]  Friedrich Otto,et al.  Finite complete rewriting systems and the complexity of the word problem , 1984, Acta Informatica.

[23]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[24]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[25]  Jan van den Heuvel,et al.  Finding paths between 3‐colorings , 2011, IWOCA.