Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: Engineering of a high-yield zeaxanthin strain.

[1]  Junchao Huang,et al.  Induced High-Yield Production of Zeaxanthin, Lutein, and β-Carotene by a Mutant of Chlorella zofingiensis. , 2018, Journal of agricultural and food chemistry.

[2]  E. Jin,et al.  Development of a Dunaliella tertiolecta Strain with Increased Zeaxanthin Content Using Random Mutagenesis , 2017, Marine drugs.

[3]  G. Sandmann,et al.  Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. , 2017, Journal of biotechnology.

[4]  Jian-Zhong Liu,et al.  Metabolic engineering of Escherichia coli to produce zeaxanthin , 2015, Journal of Industrial Microbiology & Biotechnology.

[5]  G. Sandmann,et al.  The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina , 2015, BMC Genomics.

[6]  A. Kondo,et al.  Development of a multi-gene expression system in Xanthophyllomyces dendrorhous , 2014, Microbial Cell Factories.

[7]  G. Sandmann,et al.  Multiple transformation with the crtYB gene of the limiting enzyme increased carotenoid synthesis and generated novel derivatives in Xanthophyllomyces dendrorhous. , 2014, Archives of biochemistry and biophysics.

[8]  G. Sandmann,et al.  Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering , 2013, Biotechnology Letters.

[9]  Martha Neuringer,et al.  The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field. , 2012, The American journal of clinical nutrition.

[10]  V. Cifuentes,et al.  Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. , 2011, FEMS yeast research.

[11]  John Buckingham,et al.  Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous , 2011, Applied Microbiology and Biotechnology.

[12]  Elizabeth J Johnson,et al.  Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products , 2009 .

[13]  Gerhard Sandmann,et al.  Metabolic Engineering of the Carotenoid Biosynthetic Pathway in the Yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) , 2003, Applied and Environmental Microbiology.

[14]  E. Jin,et al.  A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions , 2003, Biotechnology and bioengineering.

[15]  G. Sandmann Combinatorial Biosynthesis of Carotenoids in a Heterologous Host: A Powerful Approach for the Biosynthesis of Novel Structures , 2002, Chembiochem : a European journal of chemical biology.

[16]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[17]  R. D. Medwid Phaffia rhodozyma is polyploid , 1998, Journal of Industrial Microbiology and Biotechnology.

[18]  A. V. van Ooyen,et al.  Efficient transformation of the astaxanthin-producing yeast Phaffia rhodozyma , 1998 .

[19]  L. Ferenczy,et al.  Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) , 1998, Antonie van Leeuwenhoek.

[20]  A. Jimenez,et al.  Genetics and electrophoretic karyotyping of wild-type and astaxanthin mutant strains of Phaffia rhodozyma , 1997, Antonie van Leeuwenhoek.

[21]  S. Harrison,et al.  Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation , 1997, Biotechnology Letters.

[22]  M. Rivkin,et al.  XcmI-containing vector for direct cloning of PCR products. , 1997, BioTechniques.

[23]  A. V. van Ooyen,et al.  High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. , 1997, Gene.

[24]  T. G. Villa,et al.  Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma , 1995, Biotechnology Letters.

[25]  G. Ditta,et al.  Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. , 1985, Plasmid.

[26]  G. Sandmann,et al.  Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin , 2016, Applied Microbiology and Biotechnology.

[27]  G. Sandmann Carotenoids of biotechnological importance. , 2015, Advances in biochemical engineering/biotechnology.

[28]  G. Sandmann,et al.  Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant , 2013, Applied Microbiology and Biotechnology.

[29]  V. Cifuentes,et al.  Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous. , 2008, Biological research.

[30]  T. Goodwin Fungal carotenoids , 2008, The Botanical Review.

[31]  V. Cifuentes,et al.  Genetic determination of ploidy level in Xanthophyllomyces dendrorhous , 2004, Antonie van Leeuwenhoek.

[32]  T. Jeffries Utilization of xylose by bacteria, yeasts, and fungi. , 1983, Advances in biochemical engineering/biotechnology.

[33]  M. Starr,et al.  (3R,3′R)-astaxanthin from the yeast Phaffia rhodozyma , 1976 .