Adding Counting Quantifiers to Graph Patterns

This paper proposes quantified graph patterns (QGPs), an extension of graph patterns by supporting simple counting quantifiers on edges. We show that QGPs naturally express universal and existential quantification, numeric and ratio aggregates, as well as negation. Better still, the increased expressivity does not come with a much higher price. We show that quantified matching, i.e., graph pattern matching with QGPs, remains NP-complete in the absence of negation, and is DP-complete for general QGPs. We show how quantified matching can be conducted by incorporating quantifier checking into conventional subgraph isomorphism methods. We also develop parallel scalable algorithms for quantified matching. As an application of QGPs, we introduce quantified graph association rules defined with QGPs, to identify potential customers in social media marketing. Using real-life and synthetic graphs, we experimentally verify the effectiveness of QGPs and the scalability of our algorithms.

[1]  Christos Faloutsos,et al.  Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining , 1998, VLDB.

[2]  Daniel J. Abadi,et al.  Scalable SPARQL querying of large RDF graphs , 2011, Proc. VLDB Endow..

[3]  Larry Rudolph,et al.  A Complexity Theory of Efficient Parallel Algorithms , 1990, Theor. Comput. Sci..

[4]  Marc Lelarge,et al.  Balanced graph edge partition , 2014, KDD.

[5]  Ravi Bapna,et al.  Do Your Online Friends Make You Pay? A Randomized Field Experiment on Peer Influence in Online Social Networks - Online E-Companion Appendix , 2014, Manag. Sci..

[6]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[7]  Sergio A. Alvarez,et al.  Efficient Adaptive-Support Association Rule Mining for Recommender Systems , 2004, Data Mining and Knowledge Discovery.

[8]  Junhu Wang,et al.  Exploiting Vertex Relationships in Speeding up Subgraph Isomorphism over Large Graphs , 2015, Proc. VLDB Endow..

[9]  Sergio A. Alvarez,et al.  Collaborative Recommendation via Adaptive Association Rule Mining , 2000 .

[10]  Laks V. S. Lakshmanan,et al.  Discovering leaders from community actions , 2008, CIKM '08.

[11]  Richard E. Korf Minimizing Disk I/O in Two-Bit Breadth-First Search , 2008, AAAI.

[12]  Cong Yu,et al.  SocialScope: Enabling Information Discovery on Social Content Sites , 2009, CIDR.

[13]  Andreas Hotho,et al.  Mining Association Rules in Folksonomies , 2006, Data Science and Classification.

[14]  George Karypis,et al.  METIS and ParMETIS , 2011, Encyclopedia of Parallel Computing.

[15]  Thomas W. Reps,et al.  On the Computational Complexity of Dynamic Graph Problems , 1996, Theor. Comput. Sci..

[16]  Jeong-Hoon Lee,et al.  An In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases , 2012, Proc. VLDB Endow..

[17]  Konstantin Andreev,et al.  Balanced Graph Partitioning , 2004, SPAA '04.

[18]  Claudio Gutiérrez,et al.  SNQL: A Social Networks Query and Transformation Language , 2011, AMW.

[19]  Letizia Tanca,et al.  Semantic Web Information Management - A Model-Based Perspective , 2009, Semantic Web Information Management.

[20]  Fabian M. Suchanek,et al.  AMIE: association rule mining under incomplete evidence in ontological knowledge bases , 2013, WWW.

[21]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[22]  Tim Furche,et al.  SPARQLog: SPARQL with Rules and Quantification , 2009, Semantic Web Information Management.

[23]  Xindong Wu,et al.  Efficient mining of both positive and negative association rules , 2004, TOIS.

[24]  Ravi Bapna,et al.  Do Your Online Friends Make You Pay ? A Randomized Field Experiment in an Online Music Social Network , 2012 .

[25]  Pablo de la Fuente,et al.  An Empirical Study of Real-World SPARQL Queries , 2011, ArXiv.

[26]  Sanjeev Khanna,et al.  A PTAS for the multiple knapsack problem , 2000, SODA '00.

[27]  Andy Schürr,et al.  Incremental Graph Pattern Matching , 2006 .

[28]  David A. Bader,et al.  GTgraph : A Synthetic Graph Generator Suite , 2006 .

[29]  Neil Immerman,et al.  A Visual Language for Querying and Updating Graphs , 2002 .

[30]  Lin Ma,et al.  Parallel subgraph listing in a large-scale graph , 2014, SIGMOD Conference.

[31]  Wilfred Amaldoss,et al.  Trading Up : A Strategic Analysis of Reference Group Effects , 2008 .

[32]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[33]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[34]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[35]  Schahram Dustdar,et al.  Expressive languages for selecting groups from graph-structured data , 2013, WWW.

[36]  Xin Wang,et al.  Association Rules with Graph Patterns , 2015, Proc. VLDB Endow..

[37]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[38]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[39]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[40]  W. Bruce Croft,et al.  Learning concept importance using a weighted dependence model , 2010, WSDM '10.