Integrated-Circuit Structures on Anisotropic Substrates

This paper addresses the problem of anisotropy in substrate materials for microwave integrated-circuit applications. It is shown that in modeling the circuit characteristics, a serious error is incurred which becomes larger with increasing frequency when the substrate anisotropy is neglected. Quasi-static, dynamic, and empirical methods employed to obtain the propagation characteristics of microstrip, coplanar waveguides, and slotlines on anisotropic substrates are presented. Numerical solutions such as the method of moments and the transmission-line matrix technique are outlined. The modified Wiener-Hopf, the Fourier series techniques, and the method of lines are also discussed. A critique of the aforementioned methods and suggestions for future research directions are presented. The paper includes new results as well as a review of established methods.

[1]  R. P. Owens,et al.  2-18-GHz Dispersion Measurements on 10-100-Omega Microstrip Lines on Sapphire , 1976 .

[2]  David M. Pozar,et al.  Surface Wave Losses at Discontinuities in Millimeter Wave Integrated Transmission Lines , 1985, 1985 IEEE MTT-S International Microwave Symposium Digest.

[3]  Uwe Schulz,et al.  A new technique for the analysis of the dispersion characteristics of planar waveguides , 1980 .

[4]  P. B. Johns,et al.  Generalised elements for t.l.m. method of numerical analysis , 1975 .

[5]  E. Stern,et al.  Nonreciprocal Remanence Phase Shifters in Rectangular Waveguide , 1967 .

[6]  P. B. Johns,et al.  Application of the transmission-line-matrix method to homogeneous waveguides of arbitrary cross-section , 1972 .

[7]  New View on an Anisotropic Medium and Its Application to Transformation from Anisotropic to Isotropic Problems , 1979 .

[8]  R. P. Owens,et al.  Quasi-Static Characteristics of Microstrip on an Anisotropic Sapphire Substrate , 1976 .

[9]  P. Johns,et al.  Solution of Maxwell's equations in three space dimensions and time by the t.l.m. method of numerical analysis , 1975 .

[10]  H. Shibata,et al.  Analysis of the Shielded-Strip Transmission Line with an Anisotropic Medium , 1982 .

[11]  T. Kitazawa,et al.  Coupled Slots on an Anisotropic Sapphire Substrate , 1981 .

[12]  S. Koul,et al.  Generalized Analysis of Microstrip-Like Transmission Lines and Coplanar Strips with Anisotropic Substrates for MIC, Electrooptic Modulator, and SAW Application , 1983 .

[13]  N. Uzunoglu,et al.  A Simple Analysis of Thick Microstrip on Anisotropic Substrates (Technical Notes) , 1978 .

[14]  W. J. Getsinger,et al.  Microstrip Dispersion Model , 1973 .

[15]  N. G. Alexopoulos,et al.  Microstrip Discontinuity Modelling for Millimetric Integrated Circuits , 1985, 1985 IEEE MTT-S International Microwave Symposium Digest.

[16]  C. Krowne,et al.  Pyrolytic boron nitride as a microstrip substrate material , 1977, 1977 EIC 13th Electrical/Electronics Insulation Conference.

[17]  J. A. Weiss,et al.  Parameters of Microstrip Transmission Lines and of Coupled Pairs of Microstrip Lines , 1968 .

[18]  S. A. Maas,et al.  Characteristics of Microstrip Directional Couplers on Anisotropic Substrates , 1982 .

[19]  H. Delfs,et al.  High-directivity microstrip directional couplers , 1974 .

[20]  R. Terakado,et al.  Accurately Approximate Formula of Effective Filling Fraction for Microstrip Line with Isotropic Substrate and its Application to the Case with Anisotropic Substrate , 1979 .

[21]  J. B. Davies,et al.  Theoretical Design of Symmetrical Junction Stripline Circulators , 1963 .

[22]  D. D. Coon,et al.  Far-Infrared Properties of Quartz and Sapphire , 1962 .

[23]  A. Trier Guided electromagnetic waves in anisotropic media , 1953 .

[24]  I. Wolff,et al.  Power Density Distribution Analysis of Ferrite Loaded Finlines for the Development of Integrated Nonreciprocal Millimeter Wave Elements , 1984 .

[25]  Uwe Schulz,et al.  A New Technique for the Analysis of the Dispersion Characteristics of Planar Waveguides Demonstrated for the Coplanar Line , 1980, 1980 10th European Microwave Conference.

[26]  M. Olyphant Microwave Permittivity Measurements Using Disk Cavity Specimens , 1971 .

[27]  M. Horno Quasistatic characteristics of microstrip on arbitrary anisotropic substrates , 1980 .

[28]  A. Adams,et al.  Characteristic Impedance of Microstrip by the Method of Moments (Correspondence) , 1970 .

[29]  Attilio Jose Giarola,et al.  Characteristics of broadside-coupled microstrip lines with iso/anisotropic substrates , 1981 .

[30]  K. Hatori,et al.  Dispersion characteristics of coupled microstrip with overlay on anisotropic dielectric substrate , 1984 .

[31]  J. Fontanella,et al.  Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO , 1974 .

[32]  N. G. Alexopoulos,et al.  Toward a Generalized Algorithm for the Modeling of the Dispersive Properties of Integrated Circuit Structures on Anisotropic Substrates , 1985 .

[33]  N. Alexopoulos,et al.  Erratum: Dispersionless coupled microstrip over fused silica-like anisotropic substrates , 1976 .

[34]  M. V. Schneider,et al.  Microstrip lines for microwave integrated circuits , 1969 .

[35]  Ricardo Marqués,et al.  Coupled Microstrips on Double Anisotropic Layers (Short Papers) , 1984 .

[36]  N. Uzunoglu,et al.  An efficient computation of thick microstrip properties on anisotropic substrates , 1978 .

[37]  Reinhold Pregla,et al.  Hybrid-Mode Analysis of Arbitrarily Shaped Planar Microwave Structures by the Method of Lines , 1984 .

[38]  K. Button,et al.  Microwave Ferrite Devices: The First Ten Years , 1984 .

[39]  J. B. Davies,et al.  An Analysis of the m-Port Symmetrical H-Plane Waveguide Junction with Central Ferrite Post , 1962 .

[40]  D. D. Paolino MIC Overlay Coupler Design Using Spectral Domain Techniques , 1978 .

[41]  M. Olyphant Measuring Anisotropy in Microwave Substrates , 1979, 1979 IEEE MTT-S International Microwave Symposium Digest.

[42]  B. Bhat,et al.  Inverted microstrip and suspended microstrip with anisotropic substrates , 1982, Proceedings of the IEEE.

[43]  K. Atsuki,et al.  Distributed Capacitance of a Thin-Film Electrooptic Light Modulator (Letters) , 1975 .

[44]  R. Pregla,et al.  The Method of Lines for the Analysis of Planar Waveguides with Magnetized Ferrite Substrate , 1984 .

[45]  T. Ueda,et al.  An Approximate Dispersion Formula of Microstrip Lines for Computer Aided Design of Microwave Integrated Circuits , 1979 .

[46]  G. E. Mariki,et al.  Dynamic Three-Dimensional TLM Analysis of Microstriplines on Anisotropic Substrate , 1985 .

[47]  P. Katehi,et al.  On the modeling of electromagnetically coupled microstrip antennas--The printed strip dipole , 1984 .

[48]  M. Kales,et al.  Modes in Wave Guides Containing Ferrites , 1953 .

[49]  M. Horno Upper and lower bounds on capacitances of coupled microstrip lines with anisotropic substrates , 1982 .

[50]  T. Kitazawa,et al.  Propagation Characteristics of Striplines with Multilayered Anisotropic Media , 1983 .

[51]  M. Kobayashi,et al.  Method for Equalizing Phase Velocities of Coupled Microstrip Lines by Using Anisotropic Substrate , 1980 .

[52]  M. Kobayashi Frequency Dependent Characteristics of Microstrips on Anisotropic Substrates , 1982 .

[53]  T. Kitazawa,et al.  Quasi-Static Characteristics of Coplanar Waveguide on a Sapphire Substrate with its Optical Axis Inclined , 1982 .

[54]  Nicolaos G. Alexopoulos,et al.  Characteristics of Single and Coupled Microstrips on Anisotropic Substrates , 1978 .

[55]  B. Sheleg,et al.  Broad-Band Directional Couplers Using Microstrip with Dielectric Overlays , 1974 .

[56]  J. E. Dalley,et al.  A Strip-Line Directional Coupler Utilizing a Non-Homogeneous Dielectric Medium , 1967 .

[57]  W. Weeks Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface , 1970 .

[58]  C. Krowne Microstrip transmission lines on pyrolytic boron nitride , 1976 .

[59]  P. Katehi,et al.  Frequency-Dependent Characteristics of Microstrip Discontinuities in Millimeter-Wave Integrated Circuits , 1985 .

[60]  R. B. Mack,et al.  The Inverse Problem for Biaxial Materials , 1984 .

[61]  Peter B. Johns,et al.  Numerical solution of 2-dimensional scattering problems using a transmission-line matrix , 1971 .

[62]  E. E. Bell,et al.  Optical constants of sapphire in the far infrared. , 1967, Journal of the Optical Society of America.

[63]  Analysis of the Microstrip and the Electrooptic Light Modulator , 1978 .

[64]  B. T. Szentkuti,et al.  Simple analysis of anisotropic microstrip lines by a transform method , 1976 .

[65]  A-M.A. El-Sherbiny Hybrid Mode Analysis of Microstrip Lines on Anisotropic Substrates , 1981 .

[66]  M. Kobayashi Green's Function Technique for Solving Anisotropic Electrostatic Field Problems , 1978 .

[67]  D. Smith,et al.  Optical constants of far infrared materials. 2: crystalline solids. , 1973, Applied optics.

[68]  P. Ladbrooke,et al.  Coupling Errors in Cavity-Resonance Measurements on MIC Dielectrics (Short Papers) , 1973 .

[69]  K. Atsuki,et al.  Application of MIC Formulas to a Class of Integrated-Optics Modulator Analyses: A Simple Transformation (Short Papers) , 1977 .

[70]  H. Bosma On Stripline Y-Circulation at UHF , 1964 .