Efficient algorithm for conformational search of macrocyclic molecules

A new algorithm, complementarity, is developed for conformational search of macrocyclic molecules. The algorithm scans a large number of candidate conformations and energy‐minimizes only the promising ones. These candidates can be generated by two operators that construct new conformations from known minima. The candidates have similar bonded‐interaction energy as the known minima and possibly lower nonbonded interaction energy. This algorithm is 9 to 11 times faster than the existing methods when tested on two large rings, cycloheptadecane and rifamycin SV. © 1997 by John Wiley & Sons, Inc.

[1]  Martin Saunders,et al.  Conformations of cycloheptadecane. A comparison of methods for conformational searching , 1990 .

[2]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[3]  Andrew R. Leach,et al.  WIZARD: AI in conformational analysis , 1987, J. Comput. Aided Mol. Des..

[4]  Simulated annealing of rings using an exact ring closure algorithm , 1992 .

[5]  S K Arora,et al.  Correlation of structure and activity in ansamycins. Molecular structure of sodium rifamycin SV. , 1983, Molecular pharmacology.

[6]  M. Saunders Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum , 1987 .

[7]  J. Hermans,et al.  A different best rigid-body molecular fit routine , 1977 .

[8]  Eiji Ōsawa,et al.  An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules , 1993 .

[9]  W. M. Carson,et al.  Drugs by design. , 1993, Scientific American.

[10]  I. Kuntz,et al.  Structure-based discovery of inhibitors of thymidylate synthase. , 1993, Science.

[11]  Richard S. Judson,et al.  Conformational searching methods for small molecules. II. Genetic algorithm approach , 1993, J. Comput. Chem..

[12]  Andrew Smellie,et al.  Poling: Promoting conformational variation , 1995, J. Comput. Chem..

[13]  W. C. Still,et al.  The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space , 1988 .

[14]  Zhuming Ai,et al.  Knowledge based method for building molecular models , 1993, J. Chem. Inf. Comput. Sci..

[15]  C. Swahn,et al.  Exploratory Calculations of Medium and Large Rings. Part 1. Conformational Minima of Cycloalkanes. , 1973 .

[16]  Bernard Testa,et al.  Principles of organic stereochemistry , 1979 .

[17]  A. Nagel,et al.  Macrolide antibiotics. Chemistry, biology, and practice , 1985 .

[18]  Richard S. Judson,et al.  Analysis of the genetic algorithm method of molecular conformation determination , 1993, J. Comput. Chem..

[19]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[20]  Eiji Osawa,et al.  Corner flapping: a simple and fast algorithm for exhaustive generation of ring conformations , 1989 .

[21]  István Kolossváry,et al.  Torsional flexing: Conformational searching of cyclic molecules in biased internal coordinate space , 1993, J. Comput. Chem..

[22]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[23]  Andrew R. Leach,et al.  Automated conformational analysis: Directed conformational search using the A* algorithm , 1990 .

[24]  M. Karplus,et al.  Prediction of the folding of short polypeptide segments by uniform conformational sampling , 1987, Biopolymers.

[25]  Robert Langridge,et al.  A distance geometry study of ring systems , 1983 .