A distributed timing analysis framework for large designs

Given ever-increasing circuit complexities, recent trends are driving the requirement for distributed timing analysis (DTA) in electronic design automation (EDA) tools. However, DTA has received little research attention so far and remains a critical problem. In this paper, we introduce a DTA framework for large designs. Our framework supports (1) general design partitions in distributed file systems, (2) non-blocking IO with event-driven loop for effective communication and computation overlap, and (3) an efficient messaging interface between application and network layers. The effectiveness and scalability of our framework has been evaluated on large hierarchical industry designs over a cluster with hundreds of machines.