Using imprecise analogical reasoning to refine the query answers for heterogeneous multidatabase systems in virtual enterprises

Virtual enterprise is typically one kind of information-based enterprise. The features of information system in virtual enterprise can be generalized as heterogeneous and distributed. Its organization and production management put an essential requirement on information integration. A core problem in the integration of heterogeneous information sources is the resolution of a great deal of conflicts, which result in the situation of imprecise information. Therefore, it is necessary for the production activities of virtual enterprise to acquire the more informative information from the information source with imprecision based on database systems.

[1]  David L. Spooner,et al.  Sharing manufacturing information in virtual enterprises , 1996, CACM.

[2]  Soumitra Dutta,et al.  Approximate reasoning by analogy to answer null queries , 1991, Int. J. Approx. Reason..

[3]  Asbjørn Rolstadås,et al.  Enterprise modelling for competitive manufacturing , 1995 .

[4]  John Grant,et al.  Partial Values in a Tabular Database Model , 1979, Inf. Process. Lett..

[5]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[6]  E. F. Codd,et al.  Extending the database relational model to capture more meaning , 1979, ACM Trans. Database Syst..

[7]  Wenjun Chris Zhang,et al.  Assessment of Data Redundancy in Fuzzy Relational Databases Based on Semantic Inclusion Degree , 1999, Inf. Process. Lett..

[8]  Witold Lipski,et al.  On semantic issues connected with incomplete information databases , 1979, ACM Trans. Database Syst..

[9]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[10]  Paolo Atzeni,et al.  Functional Dependencies and Constraints on Null Values in Database Relations , 1986, Inf. Control..

[11]  Arbee L. P. Chen,et al.  Refining Imprecise Data by Integrity Constraints , 1993, Data Knowl. Eng..

[12]  Wenjun Chris Zhang,et al.  Information modelling for made-to-order virtual enterprise manufacturing systems , 1999, Comput. Aided Des..

[13]  E. F. Codd More commentary on missing information in relational databases (applicable and inapplicable information) , 1987, SGMD.

[14]  Sujeet Shenoi,et al.  Analyzing FD Inference in Relational Databases , 1996, Data Knowl. Eng..

[15]  Cheng Hsu,et al.  The model-assisted global query system for multiple databases in distributed enterprises , 1996, TOIS.

[16]  Gösta Grahne,et al.  Dependency Satisfaction in Databases with Incomplete Information , 1984, VLDB.

[17]  LINDA G. DEMICHIEL,et al.  Resolving Database Incompatibility: An Approach to Performing Relational Operations over Mismatched Domains , 1989, IEEE Trans. Knowl. Data Eng..

[18]  E. F. Codd,et al.  Missing information (applicable and inapplicable) in relational databases , 1986, SGMD.

[19]  Carlo Zaniolo,et al.  Database relations with null values , 1982, J. Comput. Syst. Sci..

[20]  Tomasz Imielinski,et al.  Incomplete information and dependencies in relational databases , 1983, SIGMOD '83.

[21]  Stephen Shaoyi Liao,et al.  Functional dependencies with null values, fuzzy values, and crisp values , 1999, IEEE Trans. Fuzzy Syst..

[22]  John Grant,et al.  Incomplete Information in a Relational Database , 1980, Fundamenta Informaticae.

[23]  Elke A. Rundensteiner,et al.  On nearness measures in fuzzy relational data models , 1989, Int. J. Approx. Reason..

[24]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[25]  John Grant,et al.  Answering Queries in Indefinite Databases and the Null Value Problem , 1986, Adv. Comput. Res..

[26]  Tomasz Imielinski,et al.  Complexity of query processing in databases with OR-objects , 1989, PODS '89.