Spectral Discretization of a Naghdi Shell Model

We consider the Naghdi equations which model a thin three-dimensional shell. We propose a spectral discretization of this problem in the case where the midsurface of the shell is weakly regular. We perform the numerical analysis of the discrete problem and prove optimal error estimates.

[1]  Adel Blouza,et al.  Two Finite Element Approximations of Naghdi's Shell Model in Cartesian Coordinates , 2006, SIAM J. Numer. Anal..

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  F. Brezzi,et al.  Sur la classification des coques linéairement élastiques , 1999 .

[4]  Adel Blouza,et al.  Existence and uniqueness for the linear Koiter model for shells with little regularity , 1999 .

[5]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[6]  Patrick Le Tallec,et al.  A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .

[7]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[8]  Nabil Kerdid,et al.  Conforming finite element approximation for shells with little regularity , 2000 .

[9]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  A. Blouza,et al.  Nagdhi's Shell Model: Existence, Uniqueness and Continuous Dependence on the Midsurface , 2001 .

[12]  Yvon Maday,et al.  UNIFORM INF–SUP CONDITIONS FOR THE SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM , 1999 .

[13]  Yvon Maday,et al.  La méthode des elements avec joint appliquée aux méthodes d'approximations Discrete Kirchhoff Triangles , 1998 .